

2019 CIP MINI SUMMIT

Use Case of CIP for Power Plant Systems

Toshiba Energy Systems & Solutions Corporation 2019.10.31

Self-introduction

My Background & experience

- Embedded software engineer (RTOS)
- Linux controller development lead
- Development Group manager
- Development chief specialist
 - Embedded software, Hardware, FPGA, Web-based software

Introduction of my company & department

- Toshiba Energy Systems & Solutions
 - provides energy-related systems
 - renewable energy, power distribution and VPP
 - hydrogen, nuclear and thermal
- Power Platform Development Department
 - Product development and supply to support power infrastructure worldwide

For whom

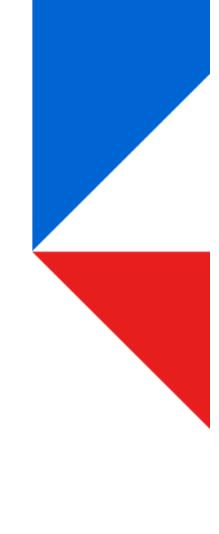
 \rightarrow People who are using and will use Linux for high reliable embedded products

How to be

 \rightarrow Join and be part of CIP

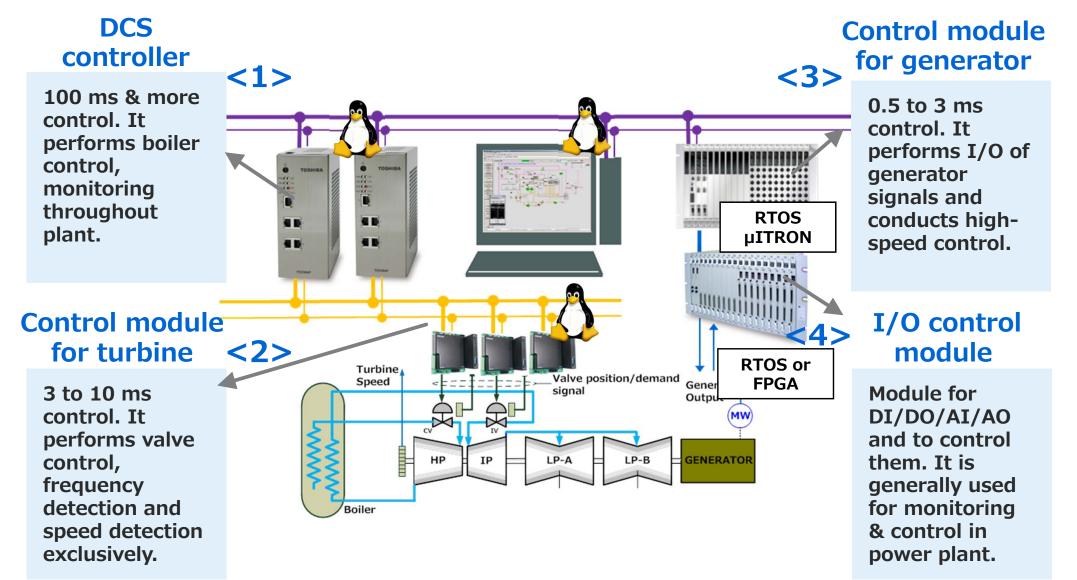
Approach

 \rightarrow What cases we have experienced and CIP effectiveness



01 Product Introduction

02 Issues after Linux Application


03 CIP Utilization and Contribution to CIP

04 Summary

Product Introduction

Four major product groups based on target and cycle

Product Introduction – Features

Products are equipped with rigorous features for stable supply of electricity.

Realization of high availability with redundancy

- Machine & transmission path are all redundant.
- Triplex redundancy for important turbine control

- Continuous control realized by real-time switching

Baccountability Prompt response to abnormality & accountability

- Log function to overcome two conflicting problems; analysis is allowed without affecting real-time control.

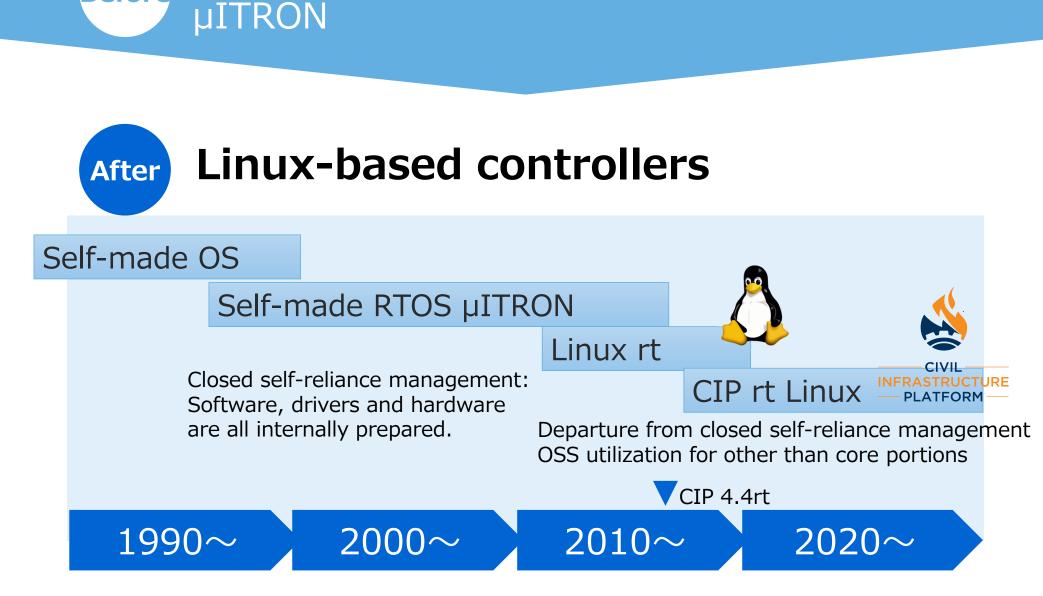
- Differentiation between single failure and common cause failure
- Evidence-based report

- Over 10 years of monitoring & control with the same product
- Continuous supply of hardware & software

- Response to revised/abolished hardware

Secured & safe device

- Evaluation and measures for vulnerability
- Patch application with maintaining reliability
- Application of the latest features such as whitelist


Differentiation between failure and attack

Despite these constraints, we decided to apply Linux for more enhanced functionality and speedy developments

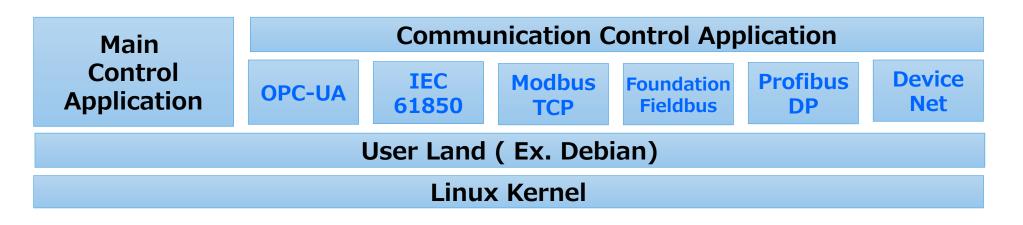
Product Introduction - history of our controllers

Before

Products based on real-time OS & self-made

Product Introduction – Application of Linux

Why Linux?


- Various open protocol
- Easy to use hardware
- Utilization of stack from 3rd vendors
- Similar operation on PC

speedy value-added products launch

Overview of systems we have developed

 Development efficiency and speed improved by utilizing various OSS and 3rd party vendor software; benefits and advantages provided

However, some issues have emerged

Kernel correction cases

- 1. Problems in kernel/driver (all low-frequency)
 - a. Kernel panic with e1000 (network) driver
 - b. WDT error occurrence and revision of timer handler (as yet unproven*)
 - c. PCI I/F hang-up and addition of retry function (as yet unproven*)

 * Measures were taken based on assumptions on the problems but their effectiveness has not been confirmed as the problems only occurred on site.

- 2. Addition of new functions to old kernel
 - a. Addition of Precision Time Protocol (PTP) function
 - b. Peripheral function update to implement whitelist function
 - c. Addition of DMA function to improve UART performance
- 3. Others
 - a. Application of security patches as necessary
 - b. Addition of logging & dump to analyze less frequent problems

Case 1

Oops & kernel panic with e1000 driver

What happened

Sudden reboot with watch dog timer error

General description

- Kernel panic occurred during continuous energization on site.
- e1000 driver was identified from a back-trace.
- The incident occurred after 3 years of product shipment.

Driver check

• Easily found a driver patch for the problem

Too much time elapsed after product shipment

• Is this patch simply applicable to the kernel being used for products without problem...?

Patch contents check

• The scale is smaller than expected and there is no problem!

This issue was fixed but what about other patches?

diff --git a/drivers/net/e1000e/e1000.h b/drivers/net/e1000e/e1000

ul6 next to watch:

unsigned int segs:

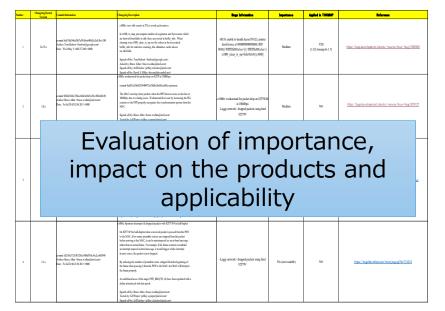
u16 length;

unsigned long time_stamp;

unsigned int bytecount; u16 mapped as page;

index d236efa..a689798 100644 (file)

00 -194,6 +194,8 00 struct e1000 buffer {


--- a/drivers/net/e1000e/e1000.h +++ b/drivers/net/e1000e/e1000.h

Checked the update history of hardware drivers being used

Target hardware

- LAN driver : Approx. 450
- Super I/O* : Approx. 70
- I2C

- : Approx. 50
- * WDT, LED and UART

Check method

- Step 1: Get all the change log of kernel (upstream).
- Step 2: Get all commit log from changelog related to drivers.
- Step 3: Filter BUG FIX from list of commit logs.
- Evaluation with the help of internal kernel experts

Fortunately there happened to be no item that pose problems but the checking required great effort.

Case 2

Addition of new functions to existing products

What happened

- Development conducted to add the following functions
 - Precision Time Protocol (PTP) function
 - Whitelist function for security
 - DMA function to improve UART performance
- Hard to support these functions in our existing products

General description

- Backports were no more necessary because development of applying to CIP had just started.
- However this kind of additions might be happened in the future.
- On such an occasion, we are willing to utilize CIP and also contribute to CIP.

CIP will motivate us to perform backporting for useful functions to be added in the future.

CIP utilization

From Case 1

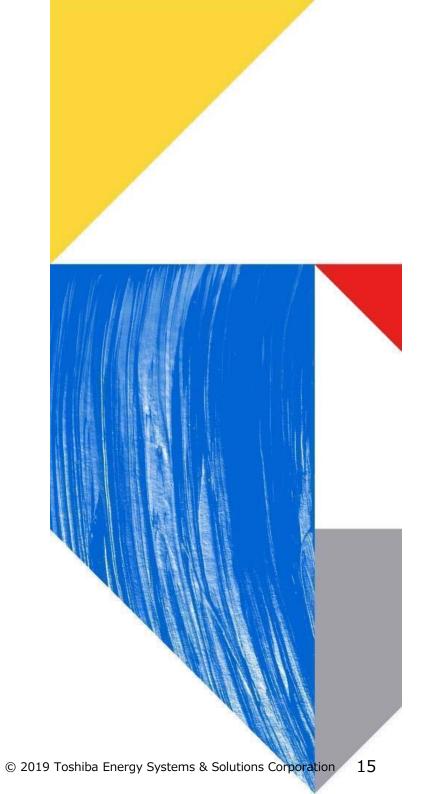
- Driver bug fix patch to be utilized
- Kernel processing patch to be utilized

From Case 2

- Motivation to backport new function leading to long-term maintenance
- Cooperation and consultation for backports of new functions possibly

Contribution to CIP

- Backport functions to be shared with CIP
- Information of requests and issues in using products to be shared with CIP
- Merging kernels and drivers that we have corrected into the mainline


Today's presentation

- Embedded-Linux-applied our products
- Issues after Linux application that we experienced
- Utilization of and contribution to CIP

Hope CIP members be increased & long-term maintenance be shared by everyone in CIP

Thank you

