
Welcome	to	the	OpenChain	Curriculum	Slides.	These	slides	can	be	used to	help	train	
internal	teams	about	FOSS	compliance	issues	and	to	conform	with	the	OpenChain	
Specification.

You	can	deliver	these	slides	as	one	half-day	training	session	or	you can	deliver	each	
chapter	as	a	separate	module.	Please	note	that	each	chapter	has	“Check	Your	
Understanding”	slides	with	questions	and	answers	in	the	slide	notes.	These	can	be	
used	as	the	basis	for	in-house	tests	for	FOSS	compliance.

1

This slide	is	relevant	to	providing	either	a	single	three	hour	training	session	or	
explaining	how	a	series	of	shorter	sessions	focused	on	“per	chapter”	training	will	
work.

2

This	slide	is	intended	to	help	a	company	identify	where	their	internal	FOSS	policy	is	
located	in	the	company	documentation.

3

This	chapter	is	focused	on	the	“big	picture”	of	Intellectual	Property.	This	chapter	is	
probably	most	useful	for	managers	or	developers	who	might	not	understand	clearly	
the	fundamentals	of	copyright,	patent	and	trademark	law.

4

This	overview	is	not	intended	to	cover	all	aspects	of	Intellectual	Property. It	is	
intended	to	provide	context	for	the	“big	picture”	and	to	establish	that	today	we	are	
only	discussing	copyright	and	patents,	the	areas	most	relevant	to	FOSS	compliance.

5

This	slide	explains	the “big	picture”	of	copyright	in	software.

6

This	slide	clarifies	the	most	important	parts	of	copyright	law	to	software.

7

This	slide	explains patent	concepts	relevant	to	software.

8

This slide	explains	what	is	a	“license.”	This	is	different	to	a	contract	under	US	law.	This	
slides	explains	the	boundaries	of	what	can	be	in	a	license.

9

Copyright	protects	original	works	of	authorship.It's	different	than	patent	in	that	
copyright	protects	the	expression	of	an	idea, whereas	patent	protects	the	underlying	
idea	itself.	Examples	of	works	of	authorship	include	photographs,	songs,	and	
computer	code.

Most	important	copyright	concepts	for	software	are:	right	to	reproduce,	right	to	
make	creative	works (or	right	to	modify),	and	right	to	distribute.

Software	can	be	subject	to	a	patent.	Patent	protects	method	of	operation,	such	as	
computer	program.	However, patent	protects	functionality,	and	not	abstract	ideas.

Patent	holder	can	exclude	others	from	practicing	the	patent,	regardless	of	whether	
the	others	have	independently	created	the	product.

If	you	have	independently	developed	your	own	software,	then	you	may	not	need	a	
copyright	license	if	you	can	show	the	independent	development	and	you	had	no	
access	to	the	copyrighted	work	in	question.	This	is	difficult	if	the	copyrighted	work	is	
popular	such	that	it'd	be	reasonable	to	assume	that	you	had	access. If	your	software	
reads	on	a	patent,	then	you	will	need	a	patent	license	regardless	of	whether you've	

10

independently	developed	the	software.	An	example	of	this	would	be	FFMpeg, which	
is	a	free	software	project	that	provides	the	codecs	for	encoding	and	decoding	
videos.However, you	would	still	need	a	patent	license	to	encode	and	decode	a	
certain	format.

10

This	chapter	is	useful	for	lawyers,	managers	or	developers	who	may	not	be	familiar	
with	FOSS	licenses.

11

This	slide	provides	the“big	picture”	about	what	FOSS	licenses	do.	It	also	explains	a	
resource	where	you	can	find	out	more	about	some	FOSS	licenses.

12

This	slide	explains	”permissive”	FOSS	licenses,	the	most	basic	type	of	FOSS	license,	
which	usually	have	minimal	requirements.	The	most	basic	requirement	is	to	includea	
copyright	notice.

13

This	slide	explains	reciprocity	and	Copyleft, a	more	complex	type	of	FOSS	license	that	
have	additional	requirements	above	permissive	licenses.	They	require	distribution	of	
the	original	work	and	derivative	works	under	the	same	terms	as	the	original	work.

14

This	slide	explains	proprietary	or	closed	source	licenses.	These	licenses	often	have	
very	different	requirements	and	rules compared	to	FOSS	licenses.

15

There	are	other	types	of	license	used.	Sometimes	these	are	confused	with	FOSS	but	
their	requirements	areactually	different.	Freeware	or	Shareware	licensing	should	not	
be	regarded	as	the	same	or	compatible	with	FOSS	licensing.

16

This	slide	explains	public	domain,	a	type	of	release	that	means	the	work	is	released	
without	any	restrictions	whatsoever	by	the	authors.	In	the	US	public	domain	software	
can	be	included	in FOSS	code,	but	it	should	be	noted	that	not	all	legal	jurisdictions	
recognize	the	existence	or	permit	the	release	of	authorship	under	public	domain.	
Germany	is	one	example.

17

This	slide	explains	license	compatibility,	the	way	of	understanding	what	licenses	can
be	used	together.	Some	FOSS	licenses	are	compatible	with	each	other.	Some	are	
incompatible.	This	is	an	important	consideration	when	choosing	code	and	choosing	
licenses.

18

This	slide	explains	notices,	the	text comments	in	files	that	explain	authorship	and	
licensing,	and	which	are	often	regarded	as	the	most	important	way	of	knowing	what	
license	applies	to	a	file.

19

This	slides	explains	multi-licensing.	This	is	the	situation	where	more	than	set	of	
license	terms	can	apply	to	a	piece	of	software.

Conjunctive =	Multiple	licenses	apply
GPL-2.0	project	also	includes	code	under	BSD-3-Clause	
In	this	situation	you	have	to	comply	with	both	sets	of	license	terms

Disjunctive =	Choice	of	one	open	source	license	or	another
Mozilla	tri-license
Jetty
Ruby

Disjunctive	licensing	may	be	something	important	to	explore	more	deeply	when	
creating	a	FOSS	policy.

Under disjunctive licensing you have a choice of licensing, i.e. GPL and a
more permissive license option, you may choose which license you are going
to distribute under depending on license compatibility, license requirements.
Sometimes a project has a disjunctive licensing situation, but only one license
is included in your code – so perhaps the person you got the code from

20

already made this choice. If they choose the license you werenʼt going to use,
now you might have to consider if you should figure out who the original ©
holder is and get the code directly from them

Example:
MPL 1.1/GPL 2.0/LGPL 2.1 - -
“The contents of this file are subject to the Mozilla Public License Version - 1.1
(the "License"); you may not use this file except in compliance with - the
License.
. . .

Alternatively, the contents of this file may be used under the terms of - either
the GNU General Public License Version 2 or later (the "GPL"), or - the GNU
Lesser General Public License Version 2.1 or later (the "LGPL"), - in which
case the provisions of the GPL or the LGPL are applicable instead - of those
above.

If you wish to allow use of your version of this file only - under the terms of
either the GPL or the LGPL, and not to allow others to - use your version of
this file under the terms of the MPL, indicate your - decision by deleting the
provisions above and replace them with the notice - and other provisions
required by the LGPL or the GPL. If you do not delete - the provisions above, a
recipient may use your version of this file under - the terms of any one of the
MPL, the GPL or the LGPL. “

“dual” = confusing term that may be used for any of these situations, but
usually refers to business model of OSS license or commercial license choice
For more on dual-licensing as a business model: http://oss-
watch.ac.uk/resources/duallicence2

20

FOSS	licenses	are	Free	and	FOSS	Software	licenses	generally	make	source	code	
available	under	terms	that	allow	for	modification	and	redistribution.

Typical	obligations	of	a	permissive	FOSS	license	are	that	the	copyright	notice	and	
warranty	disclaimer	are	included	with	the	software.	Very	often,	the	license	would	
expressly	prohibits	users	from	using	the	author's	name	without	permission.

Examples	of	permissive	FOSS	licenses	include	MIT,	BSD,	and	Apache.

License	reciprocity	means	that	the	derivative	work	of	the	copyrighted	work	must	be	
made	available	under	the	same	license.	Other	names	being	used	include	
"hereditary",	"copyleft",	"share-alike",	and	pejoratively"viral."

Examples	of	copyleft-style	licenses	include	GPL	and	LGPL.

Copyleft-style	licenses	often	have	source	availability	obligations,which	require	you	to	
provide	accompanying	source	code	when	you	distribute	a	binary	version	of	a	program	
or	library.	The	source	code	should	be	of	the	same	version	and	content	that	
corresponds	to	the	binary	version	you	distribute.

21

Freeware	and	Shareware	are	not	FOSS.The	reason	is	that	even	though	freeware	and	
shareware	are	available	without	cost,	they	don't	allow	the	users	to	make	
modifications	to	the	software.In	fact, many	of	the	freeware	and	sharewarecontain	
similar	license	restrictions	common	in	proprietary	software.

Multi-license	refers	to	the	practice	where	software	is	made	available	under	multiple	
licenses.	For	example,	an	open	source	software	can	be	dual-licensed	under	MIT	and	
GPLv2.	In	that	case,	you	are	free	to	choose	the	license	that	suits	your	need.

FOSS	Notices	may	include	information	about	the	identity	of	the	copyright	holders	and	
the	license	governing	the	software.	FOSS	Notices	may	provide	notice	about	
modifications.	Some	licenses	require	that	FOSS	Notices	be	retained	or	reproduced	for	
attribution	purposes.

21

This	chapter covers	the	big	picture	of	FOSS	compliance.	It	explains	how	compliance	
works	from	first	principles.

22

This	slide	explains	that	FOSS	compliance is	really	a	two-part	goal.	The	first	is	to	know	
your	obligations	and	have	a	process	to	support	this	knowledge.	The	second	is	to	
satisfy	the	obligations.

23

This	slideexpands	on	what	compliance	obligations	must	be	satisfied	in	typical	FOSS	
licenses.

24

This	slide	explains	some	of	the	conditions	or	restrictions	commonly	encountered	
when	using	FOSS	licenses.	Remember,	different	licenses	have	different	obligations.

25

This	slide	explains	when	FOSS	obligations	are	“triggered.”	FOSS	licenses	are	copyright	
licenses	and	the	basic	compliance	trigger	is	when	you	distribute	code	to another	legal	
entity.

26

This	slide	explains that	modifying	code	can	impose	obligations	under	FOSS	licenses.	It	
explains	a	little	bit	about	derivative	works.

27

This	slide	explains	how	FOSS	compliance	programswork	in	“broad	stokes”	(a	basic	
overview).	

28

This	slide	explains	moreabout	how	FOSS	compliance	practices	can	work	in	an	
organization.	

29

This	slide	describes	some	of	the	benefits	that	compliance brings	to	an	organization	
beyond	the	fact	of	fulfilling	the	legal	obligations	of	the	license.

30

FOSS	compliance	means	following	the	licensing	terms	of	FOSS	licenses.	It	involves	
understanding	the	licenses,	having	processes	to	support	the	license	terms,	and	having	
processes	to	address	any	oversights	or	errors.

The	two	main	goals	of	a	FOSS	compliance	program	are	know	your	obligationsand	to	
satisfy	your	obligations.

The	important	business	practices	of	a	FOSS	compliance	program	include:
• Identification	of	the	origin	and	license	of	FOSS	software
• Tracking	FOSS	software	within	the	development	process
• Performing	FOSS	review	and	identifying	license	obligations
• Fulfillment	of	license	obligations	when	product	ships	
• Oversight	for	FOSS	Compliance	Program,	creation	of	policy,	and	compliance	

decisions
• Training

A	FOSS	compliance	program	provides	various	benefits	such	as	an	increased	
understanding	of	how	FOSS	impacts	your	organization,	an	increased	understanding	of	
the	costs	and	risks	associated	with	FOSS,	better	relations	with	the	FOSS	community	

31

and	increased	knowledge	of	available	FOSS	solutions.

31

This	chapter	describes	some	fundamental	concepts	in	understanding	FOSS	usage

32

This slide is about how the use of FOSS components is a consideration for your
compliance. Different use cases will have different legal effects. The next few slides
explain these concepts in more detail.

33

This slides outlines what incorporation means when using FOSS.

34

This slides outlines what linking means when usingFOSS.

35

This slides outlines what modification means when using FOSS.

36

This slides outlines what translation means when using FOSS.

37

This slides explains that development tools may do some of these actions “behind the
scene”, and this is an area that companies should be aware of.

38

This slide explains some of the concepts behind distribution. Because FOSS licenses
usually apply during distribution, this is a key point to consider in a compliance
program.

39

Incorporation is when you copy portions of a FOSS component into your software
product.

Linking is when you link or join a FOSS component with your software product.

Modification is when you make changes to a FOSS component.

Translation is when you transform the code from one state to another.

When thinking about distribution of Open Source you should consider two things:
Who	receives	the	software?

• Customer/Partner
• Community	project

What	is	the	format	for	delivery?

• Source	code	delivery

40

• Binary	delivery
• Pre-loaded	onto	hardware

40

This	chapter	describes	a	“FOSS	Review”	process	in	which	FOSS	usage	is	analyzed	and	
the	relevant	obligations	are	determined

41

The	FOSS	Review	is	a	basic	building	block	of	a	FOSS	Compliance	Program.

A	FOSS	Review	can	be	the	meeting	point	for	engineering,	business	and	legal	teams,	
and	can	require	planning	and	organization	to	successfully	conduct	on	a	large	scale.
• Engineering	or	developer	teams	may	participate	in	gathering	relevant	information
• Legal	teams	analyze	and	determine	license	obligations	and	provide	guidance
• Business	and	engineering	teams	may	receive	and	implement	guidance

42

The	first	step	is	to	identify	the	proper	parties	to	initiate	a	FOSS	Review

Important	questions	to	ask	include:
• Who	are	the	decision	makers	about	FOSS	usage	(managers,	architects,	individual	

engineers,	etc.)?	
• How	can	they	raise	questions	about	FOSS	usage?
• Is	there	a	regular	point	in	your	development	process	where	FOSS	Reviews	can	

begin?

43

It	should	be	noted	that	this	list	of	information	looksquite	large.	However,	the	amount	
of	information	required	depends	on	the	size	of	your	company	and	what	you	intend	to	
do	with	the	FOSS	code.	Large	entities	tend	to	require	more	information	than	small	
entities.

There	are	a	couple	additional	issues	in	the	case	of	external	vendors.	First,	you	may	
need	to	follow	up	with	the	vendor	if	FOSS	issues	arise	in	the	future,	and	having	a	
reliable	point	of	contact	 is	important. You	may	also	need	to	meet	FOSS	license	
obligations	for	FOSS	delivered	from	the	vendor.	Ensure	you	have	the	notices	and	
source	code	as	needed	to	meet	these	obligations.

44

The	FOSS	Review	team	may	consist	of	an	interdisciplinary	team

The	legal	team,	which	may	include	in-house	or	outside	attorneys,	reviews	and	
evaluates	the	FOSS	usage	for	license	obligations

The	legal	team	may	be	supported	by	others,	including:
• Scanning	and	tooling	teams	that	identify	and	track	FOSS	usage.	These	teams	may	

provide	support	using	code	scanning	or	forensics	tools	to	identify	FOSS	
components	in	a	codebase.	The	teams	may	also	organize	and	track	information	
gathered	regarding	FOSS	usage	to	assist	with	later	compliance	processes.

• Other	specialists	or	representatives	that	may	be	impacted	by	FOSS-related	issues,	
such	as	commercial	licensing,	compliance	or	business	planning	teams.

45

The	FOSS	Review	team	should	have	the	expertise	to	properly	assess	the	FOSS	
usage. This	may	require	support	from	engineering	teams	to	educate	legal	and	
business	teams	about	the	proposed	FOSS	usage.	For	example, codescanning	may	be	
used	to	locate	undisclosed	FOSS	usage.

Once	the	proposed	FOSS	usage	has	been	fully	assessed,	the	legal	team	will	then	have	
the	necessary	information	on	which	to	make	its	judgments.

46

The	FOSS	Review	process	should	be	flexible	enough	to	allow	the	interested	parties	to	
collaborate. Sometimes	a	FOSS	usage	scenario	may	not	be	clear	to	the	FOSS	review	
team.	The	engineering	team	will	need	the	ability	to	provide	further	input.	Likewise,	
the	engineering	team	may	need	assistance	in	implementing	guidance	from	the	FOSS	
review	team.

47

The	FOSS	Review	process	should	have	oversight	(for	example,	an	Executive	Review	
Committee	in	this	diagram).	The	oversight	committee	may	make	important	policy	
decisions	or	resolve	disagreements	between	parties	in	the	review	process.

48

To	gather	and	analyze	information	regarding	FOSS	usage	and	to	produce	appropriate	
guidance.

Initiate	a	FOSS	review	process.	The	method	for	initiating	this	process	may	vary	by	
company,	but	should	be	open	to	those	who	are	involved	in	using	FOSS	in	
development.

Initiate	a	FOSS	review	process	or	contact	the	FOSS	review	team.	The	process	should	
be	flexible	enough	so	that	FOSS	users	in	your	organization	have	access	to	guidance.

The	package	name,	version,	download	URL,	license,	description	and	intended	use	in	
your	product	is	a	good	starting	point.	The	precisely	level	of	detail	you	will	need	
depends	on	your	organization	and	intended	use	case.

The	copyright	notices,	attribution	and	source	code	normally	helps	to	identify	who	is	
licensing	the	FOSS	software.

Development	team's	point	of	contact	in	case	you	need	to	follow	up	with	future	FOSS	
issues.	You	may	also	want	to	obtain	copyright	and	attribution	notices,	and source	

49

code	for	vendor	modifications	if	these	are	needed	to	satisfy	license	obligations	for	
FOSS	licenses	governing	the	third	party	software.

Check	information	for	completeness,	consistency	and	accuracy.	This	process	may	be	
assisted	by	support	teams,	including	teams	that	run	code	scanning	tools	to	scan	for	
undisclosed	FOSS	usage.

49

This	chapter	contains	an	example	of	a	detailed	end	to	end	compliance	management	
process.

50

This slide describes the definition of compliance management and its end goals.

Note that this section provides a detailed example of what may take place in a large
enterprise. Smaller companies may wish to approach the process in a more
streamlined way.

51

This	slide	is	an	overview	of	the	steps	that	will	be	described	in	this	chapter.

52

The	first	step	in	our	example	process	is	to	identify	FOSS	usage.

This	step	may	have	been	initiated	by	one	of	the	events	listed	in	“prerequisites.”	For	
example,	a	development	team	may	have	initiated	a	request	(or	initiated	a	FOSS	
Review).	The	step	may	also	begin	if	the	review	team	discovers	or	is	notified	that	FOSS	
is	being	used	in	a	software	release	or	in	third	party	software	used	by	the	company,	
and	that	a	proper	review	needs	to	take	place.	

In	this	example,	the	FOSS	review	team	may	identify	FOSS	usage	through	review	
requests	from	engineers,	from	performing	scans	of	internally-developed	and	third-
party	software,	or	reviewing	code	checked	into	development	branches.	 The	review	
team	will	then	create	a	record	of	the	review,	then	move	to	the	next	step	(“Audit”).

53

The	next	step	is	auditing	source	code	identified	in	the	previous	step.

In	our	example,	the	company	may	conduct	research	into	the	identified	FOSS	
component	(e.g.,	review	declared	licenses,	research	origins	of	the	FOSS	component).	
The	company	may	also	scan	the	source	code	to	verify	the	origin	and	composition	of	
the	code.

The	review	team	may	then	produce	an	audit	report	with	its	conclusions	regarding	the	
origin	and	licensing	of	the	source	code.

54

Once	an	audit	report	is	produced	that	confirms the	origin	and	licensing	of	source	
code,	the	review	team	should	flag	and	review	any	issues	under	the	company	FOSS	
policy.	For	example,	the	earlier	steps	may	have	identified	a	FOSS	component	that	
contains	other	FOSS	code	under	an	incompatible	license.	The	review	team	should	
provide	appropriate	feedback	to	the	engineering	team	to	resolve	the	issues.

55

In	this	step,	the	FOSS	review	team	reviews	the	facts	collected	in	the	previous	steps	
and	identifies	the	company’s	obligations	under	the	FOSS	licenses.

This	step	may	be	closely	linked	with	the	previous	step	(Resolving	Audit	Issues).	In	the	
previous	step	we	removed	FOSS	usage	that	did	not	conform	to	company	policy.	In	this	
step,	we	evaluate	and	identify	the	license	obligations	for	FOSS	usage	that	is	retained.

56

This	slide	contains	a	template	that	may	be	used	to	illustrate	FOSS	usage	and	its	
relationship	with	company	software.	For	example,	how	are	FOSS	and	company	
components	linked	together?	Templates	such	as	these	may	be	created	by	engineering	
teams	to	help	educate	the	FOSS	review	team	about	planned	FOSS	usage.

57

In	the	approval	step	of	our	example	process,	the	review	team	communicates	whether	
it	approves	of	the	FOSS	usage	in	question,	along	with	any	associated	conditions	or	
obligations.	The	approval	should	also	include	important	details	such	as	version	
numbers	of	FOSS	components	and	the	approved	usage	scenario.

58

Approval	information	from	the	previous	step	should	be	tracked	or	registered	so	that	
anyone	releasing	the	software	can	understand	and	comply	with	the	relevant	license	
obligations.

59

If	required	by	a	FOSS	license,	appropriate	notices	should	be	prepared	(often	in	a	text	
file	that	accompanies	the	release).	Notices	may	include	attribution	notices,	
modification	notices,	or	offers	for	source	code.	For	some	licenses,	you	may	also	need	
to	include	a	full	copy	of	the	license	text.

60

In	this	slide	of	our	example	process,	the	company	verifies	that	it	has	met	its	FOSS	
license	obligations	before	release.	In	cases	where	source	code	must	be	made	
available,	the	company	verifies	that	the	source	code	matches	the	binary	files	being	
distributed.	The	company	also	verifies	that	notices	are	properly	produced	and	
included	in	distribution	packages	as	needed.

61

In	cases	where	source	code	must	be	made	available,	the	company	provides	the	
accompanying	source	code	through	the	mechanisms	permitted	under	the	FOSS	
license.	This	may	mean	providing	the	source	code	along	with	the	software	
distribution,	making	it available	through	a	written	offer,	or	posting	a	source	code	
archiveon	a	website.

62

In	this	step,	the	company	verifies	that	its	distribution	complies	with	its	FOSS	license	
obligations.	This	step	could	be	a	function	of	an	entity	providing	oversight	for	the	
overall	FOSS	review	process.

63

For our example process, the steps include:
• Identification - Identify and track FOSS usage. This may take place

through engineer requests, third party disclosures, or code scanning.
• Auditing source code - Review identifiedFOSS components for license and origin

information.
• Resolving issues - Remove FOSS usage that is incompatible with FOSS policies.
• Performing reviews - Assess and determine obligations for FOSS usage.
• Approvals - Communicate approval conditions and license obligations.
• Registration/approval tracking – Track approval conditions and license obligations

for later compliance steps.
• Notices - Prepare notices as required by FOSS licenses.
• Pre-distribution verifications – Review distributions for compliance before

release.
• Accompanying Source Code Distribution – Make source code available as needed.
• Verification – Provide oversight for compliance process.

Architecture reviews examine the relationships between FOSS components and
company software. For example, how are FOSS and company components linked
together?

64

This	chapter	describes	some	common	pitfalls	in	FOSS	compliance	processes,	and	
discusses	approaches	to	avoiding	these	pitfalls

65

In this chapter, we will describe some common pitfalls to avoid in the FOSS
compliance process.

66

The first pitfall described in this slide arises where copyleft-style licensed FOSS is
inadvertently mixed with proprietary code.

This may be discovered through auditing source code for license notices or using code
scanning tools.

Preventative measures include training of engineering staff, and building regular
audits or scans into the development process.

67

The first pitfall in this slide arises where copyleft-style licensed FOSS is inadvertently
linked to proprietary code.

This type of failure may be detected using dependency tracking tools or reviews of
architecture.

Preventative measures include training of engineering staff, and building architectural
reviews into the development process.

The second pitfall arises where proprietary code is included in copyleft-style licensed
FOSS. For example, an engineering team making modifications to a FOSS component
may include proprietary code in the modifications.

This type of failure may be discovered through auditing source code introduced into
the FOSS component.

Preventative measures include training of engineering staff and building regular audits
into the development process.

68

The first pitfall in this slide arises where a company has an obligation to provide
accompanying source code, but fails to do so.

The second pitfall arises where a company provides accompanying source code, but
fails to provide the correct version that matches the distributed binary version.

The third pitfall arises where a company modifies a FOSS component, but fails to
publish the modified version of the source code. The company instead publishes the
source code for the original version of the FOSS component.

In each case, the failures may be prevented by properly applying steps in the
compliance process. For example, source code for released binaries should be
captured and stored along with the binary version. Verifications prior to release should
check to ensure the proper source code is provided with the binary release.

69

The pitfall in this slide arises where a company modifies a FOSS component, then
fails to mark its modifications when required by the FOSS license. This pitfall may be
prevented through implementing processes for marking code or within verification
steps.

70

The pitfalls in this slide arise from a failure to integrate the FOSS compliance process
with the engineering team. In these cases, the engineering team does not raise FOSS
usage to the review process, or does not receive the training on how to handle FOSS
usage.

Preventative measures include monitoring of engineering training, and also making
the compliance process easily accessible to the engineering team.

71

This slide describes potential consequences of compliance process failures. In the first
case, a code base may be used in development and releases without proper review. In
the second case, FOSS usage may be known, but license obligations are not reviewed
or determined. In the last case, the compliance process may face release deadline
pressures and have limited time to perform its tasks.

72

While avoiding the pitfalls described in this chapter may take resources and effort,
prioritizing the FOSS compliance process is important. It can help you more
effectively use FOSS in your development process, and also help maintain good
working relationships within the FOSS community.

73

Your	FOSS	compliance	process	is	a	building	block	to	establishing	good	working	
relationships	within	the	FOSS	community.

74

Pitfalls can occur under the following categories: IP failure, license compliance
failure, and compliance process failure.

An example of IP failure would be commingling of proprietary code and open source
code, which may result in making proprietary software available to general public
despite company's preference.

An example of license compliance failure would be a failure to mark an open source
software after modification or to properly list the open source software components in
the software or to make the complete and corresponding source code available.

An example of compliance process failure would be a failure in the process related to
audit, review, or approving the open source software. Auditors "waived" all the red-
flagged items in a report, or that the review and approval process takes too long.

The benefits of prioritizing compliance are that you become more efficient in your use
of FOSS, and that you build a better relationship with the open source community.

The benefits of maintaining a good community relationship are that you can better

75

assess how you can comply with the FOSS license requirements, and you have a
better two-way communication with regard to contribution and use of the FOSS.

75

