“e

OPENCHAIN

CURRICULUM

FOSS Training Reference Deck, Version 2 FINAL DRAFT
Designed for the OpenChain Specification 1.0

Released under the Creative Commons CCO 1.0 Universal license.

These slides follow US law. Different legal jurisdictions may have different legal requirements. This
should be taken into account when using these slides as part of a compliance training program.

These slides do not contain legal advice

Welcome to the OpenChain Curriculum Slides. These slides can be used to help train
internal teams about FOSS compliance issues and to conform with the OpenChain
Specification.

You can deliver these slides as one half-day training session or you can deliver each
chapter as a separate module. Please note that each chapter has “Check Your
Understanding” slides with questions and answers in the slide notes. These can be
used as the basis for in-house tests for FOSS compliance.

IR
09)

Contents

1. What is Intellectual Property?

4

Running a FOSS Review

2. Introduction to FOSS 6. End to End Compliance
Licenses Management (Example
3. Introduction to FOSS Process)
Compliance 7. Avoiding Compliance Pitfalls
4. Key Software Concepts for
FOSS Review

This slideis relevant to providing either a single three hour training session or
explaining how a series of shorter sessions focused on “per chapter” training will
work.

TR
Vv)

FOSS Policy

- <<placeholder slide to identify where the FOSS policy can be found
(OpenChain Specification 1.0, section 1.1.1)>>

This slideis intended to help a company identify where their internal FOSS policy is
located in the company documentation.

CHAPTER 1

What is Intellectual Property?

This chapter is focused on the “big picture” of Intellectual Property. This chapter is
probably most useful for managers or developers who might not understand clearly
the fundamentals of copyright, patent and trademark law.

What is “Intellectual Property”?

- Copyright: protects original works of authorship
- Protects expression (not the underlying idea)
- Software, books, audiovisual materials, semiconductor masks

- Patents: useful inventions that are novel, useful, non-obvious
- Limited monopoly to incentivize innovation

- Trade secrets: protects confidential and valuable information

- Trademarks: protects marks (word, logos, slogans, color, etc.) that identify the
source of the product

- Consumer and brand protection; avoid consumer confusion and brand dilution

This chapter will focus on copyright and patents, the areas most relevant to
FOSS compliance

This overview is not intended to cover all aspects of Intellectual Property. Itis
intended to provide context for the “big picture” and to establish that today we are
only discussing copyright and patents, the areas most relevantto FOSS compliance.

Copyright concepts in software

- Basic rule = copyright protects creative works

- Copyright generally applies to literary works, such as books, movies,
pictures, music, maps

- Software is protected by copyright, not the functionality (that's protected by
patents) but the expression (creativity in implementation details)

- The copyright owner only has control over the work that he or she created,
not someone else’s independent creation

This slide explains the “big picture” of copyrightin software.

; -‘/‘“~

Copyright rights most relevant to software

- The right to reproduce the software — making copies

- The right to create "derivative works" — making modifications

- The term derivative work refers to a new work based upon an original work to which enough
original creative work has been added so that the new work represents an original work of
authorship rather than a copy (note that this is a term of art under US law)

- The right to distribute

- Distribution is generally viewed as the provision of a copy of a piece of software in binary or
source code form to another entity (an individual or organization outside your company or
organization)

Note: The interpretation of what constitutes a “derivative work” or a “distribution” is
subject to debate in the FOSS community and within FOSS legal circles

This slideclarifies the most important parts of copyright law to software.

) '_‘/‘“"'?‘"'..

Patent concepts in software

- Patents protect functionality - this can include a method of operation, such as
a computer program
- Does not protect abstract ideas, laws of nature
- The patent owner has the right to stop anybody from exercising that
functionality, regardless of independent creation
- Other parties who want to use the technology may seek a patent license

(which may grant rights to use, make, have made, sell, offer for sale, and
import the technology)

This slide explains patent concepts relevant to software.

Licenses

- A"license" is the way a copyright or patent holder gives permission or
rights to someone else
- The license can be limited to:
- Types of use allowed (distribution, derivative works / to make, have made, manufacture)
- Exclusive or non-exclusive terms
- Geographical scope
- Perpetual or time limited duration
- The license can have conditions on the grants, meaning you only get the
license if you comply with certain obligations
- E.g, provide attribution, give a reciprocal license

- May also include contractual terms regarding warranties, indemnification,
support, upgrade, maintenance

This slide explains what is a “license.” Thisis differentto a contract under US law. This
slides explains the boundaries of whatcan be in a license.

Check Your Understanding OPENCHAIN

What type of material does copyright law protect?
What copyright rights are most important for software?
Can software be subject to a patent?

What rights does a patent give to the patent owner?

If you independently develop your own software, is it possible that you might
need a copyright license from a third party for that software? A patent license?

Copyright protects original works of authorship.It's different than patentin that
copyright protects the expression of an idea, whereas patent protects the underlying
idea itself. Examples of works of authorship include photographs, songs, and
computer code.

Most important copyright concepts for software are: rightto reproduce, right to
make creative works (or right to modify), and right to distribute.

Software can be subject to a patent. Patent protects method of operation, such as
computer program. However, patent protects functionality, and not abstractideas.

Patent holder can exclude others from practicing the patent, regardless of whether
the others haveindependently created the product.

If you haveindependently developed your own software, then you may notneed a
copyrightlicenseif you can show the independent developmentand you had no
access to the copyrighted work in question. This is difficultif the copyrighted work is
popular such thatit'd bereasonableto assume that you had access. If your software
reads on a patent, then you will need a patent license regardless of whether you've

10

independently developed the software. An example of this would be FFMpeg, which
is a free software project that provides the codecs for encoding and decoding
videos. However, you would still need a patent license to encode and decode a
certain format.

10

CHAPTER 2

Introduction to FOSS Licenses

This chapter is useful for lawyers, managers or developers who may not be familiar
with FOSS licenses.

11

—/‘ N
UdJ)

FOSS Licenses OPENCHAIN

- Free and FOSS Software licenses generally make source code available under terms
that allow for modification and redistribution

- FOSS licenses may have conditions related to providing attributions, copyright
statement preservation, or a written offer to make the source code available

- One popular set of licenses are those approved by the FOSS Initiative (OSI) based on
their FOSS Definition (OSD). A complete list of OSI-approved licenses is available at
http://www.opensource.org/licenses/

This slide provides the “big picture” about what FOSS licenses do. It also explains a
resource whereyou can find out moreaboutsome FOSS licenses.

12

Permissive FOSS Licenses OFENCHAN

- Permissive FOSS license - a term used often to describe minimally restrictive FOSS
licenses
« Example: BSD-3-Clause

+ The BSD license is an example of a permissive license that allows unlimited redistribution for
any purpose as long as its copyright notices and the license's disclaimers of warranty are
maintained

+ The license contains a clause restricting use of the names of contributors for endorsement of
a derived work without specific permission

- Other examples: MIT, Apache-2.0

This slide explains ”permissive” FOSS licenses, the most basic type of FOSS license,

which usually have minimal requirements. The most basic requirementis to includea
copyright notice.

13

~
OJd)

License Reciprocity & Copyleft Licenses OPENGHN

- Some licenses require the distribution of derivative works (or software in the same
file, same program or other boundary) under the same terms as the original work

- This is referred to as a "Copyleft", "reciprocal”, or "hereditary" effect

- Example of license reciprocity from the GPL version 2.0:

"You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed...under the terms of this License."

- Licenses that include reciprocity or Copyleft clauses include all versions of the GPL,
LGPL, AGPL, MPL and CDDL

- Copyleft licenses may include source availability obligations

This slide explains reciprocity and Copyleft, a more complex type of FOSS license that
have additional requirements above permissive licenses. They require distribution of
the original work and derivative works under the same terms as the original work.

Proprietary License or Closed Source OPENCHAIN

- A proprietary software license (or commercial license or EULA) has restrictions on
the usage, modification or distribution of the software

- Proprietary licenses often involve payment or a license fee

- Proprietary licenses are unique to each vendor - there are as many variations of
proprietary licenses as there are vendors and each must be evaluated individually
- FOSS developers often use the term "proprietary" to describe a commercial non-

FOSS license even though both FOSS and proprietary licenses are based on
intellectual property and provide a license grant to that property

This slide explains proprietary or closed source licenses. These licenses often have
very different requirements and rules compared to FOSS licenses.

IR
09)

Other Licensing Situations OPENCHAIN

- Freeware - software distributed under a proprietary license at no or very low cost
-+ The source code may or may not be available, and creation of derivative works is usually restricted

- Freeware software is usually fully functional (no locked features) and available for unlimited use (no locking
on days of usage)

- Freeware software licenses usually impose restrictions in relation to copying, distributing, and making
derivative works of the software, as well as restrictions on the type of usage (personal, commercial,
academic, etc.)

- Shareware - proprietary software provided to users on a trial basis, for a limited
time, free of charge and with limited functionalities or features

- The goal of shareware is to give potential buyers the opportunity to use the program and judge its
usefulness before purchasing a license for the full version of the software

- Most companies are very leery of Shareware, because Shareware vendors often approach
companies for large license payments after the software has freely propagated within their
organizations.

- Freeware and Shareware are not FOSS

There areother types of license used. Sometimes these are confused with FOSS but
their requirements are actually different. Freeware or Shareware licensing should not
be regarded as the same or compatible with FOSS licensing.

Public Domain

- The term public domain refers to intellectual property not protected by law and
therefore usable by the public without requiring a license

- Developers may include a public domain declaration with their software

- E.g., "All of the code and documentation in this software has been dedicated to the public domain
by the authors."

+ The public domain declaration is not the same as a FOSS license

A public domain declaration attempts to waive or eliminate any intellectual property
rights that the developers may have in the software to make it clear that it can be

used without restriction, but the enforceability of these declarations is subject to
dispute within the FOSS community

- Often the public domain declaration is accompanied by other terms, such as
warranty disclaimers. In such cases, the software may be viewed as being under a
license rather than being in the public domain

This slide explains publicdomain, a type of release that means the work is released
withoutany restrictions whatsoever by the authors. In the US publicdomain software
can beincluded in FOSS code, butit should be noted that not all legal jurisdictions
recognize the existence or permit the release of authorship under publicdomain.
Germany is one example.

17

License Compatibility

+ License compatibility is the process of ensuring that license terms do not conflict.

- If one license requires you to do something and another prohibits doing that, the licenses conflict
and are not compatible if the combination of the two software modules trigger the obligations under
a license.

- One example is that the GPLv2 extends its obligations to "derivative works."

- If a second software module is combined with a GPLv2 licensed module that is not a derivative work
of the GPLv2 licensed module, the second software module is not subject to GPLv2.

- The definition of "derivative work" is subject to different views in the FOSS community.

This slide explains license compatibility, the way of understanding what licenses can
be used together. Some FOSS licenses are compatible with each other.Some are
incompatible. This is an important consideration when choosing code and choosing
licenses.

18

Notices OPENCHAIN

Notices, such as text in comments in file headers, often provide authorship and licensing
information. FOSS licenses may also require the placement of notices in source code or
documentation to give credit to the author (an attribution) or to make it clear the software
includes modifications.

- Copyright notice - an identifier placed on copies of the work to inform the world of
copyright ownership. Example: Copyright © A. Person (2016).

- License notice - a notice that acknowledges the license terms and conditions of the FOSS
included in the product.

- Attribution notice - a notice included in the product release that acknowledges the
identity of the original authors of the FOSS included in the product.

- Modification notice — a notice that you have made modifications to the source code of a
file, such as adding your copyright notice to the top of the file.

This slide explains notices, the text comments in files that explain authorship and
licensing, and which are often regarded as the most important way of knowing what
license applies to a file.

19

Multi-Licensing

Multi-licensing refers to the practice of distributing software under two or more different
sets of terms and conditions
E.g., when software is “dual licensed,” recipients can choose to use or distribute the software under a
choice of two licenses
Note: This should not be confused for situations in which a licensor imposes more than
one license, and you must comply with all of them

This slides explains multi-licensing. This is the situation where more than set of
license terms can apply to a piece of software.

Conjunctive = Multiple licenses apply
GPL-2.0 projectalso includes code under BSD-3-Clause
In this situation you have to comply with both sets of license terms
Disjunctive = Choice of one open source license or another
Mozilla tri-license
Jetty
Ruby

Disjunctive licensing may be somethingimportantto explore more deeply when
creatinga FOSS policy.

Under disjunctive licensing you have a choice of licensing, i.e. GPL and a
more permissive license option, you may choose which license you are going
to distribute under depending on license compatibility, license requirements.
Sometimes a project has a disjunctive licensing situation, but only one license
is included in your code — so perhaps the person you got the code from

20

already made this choice. If they choose the license you weren't going to use,
now you might have to consider if you should figure out who the original ©
holder is and get the code directly from them

Example:

MPL 1.1/GPL 2.0/LGPL 2.1 - -

“The contents of this file are subject to the Mozilla Public License Version - 1.1
(the "License"); you may not use this file exceptin compliance with - the
License.

Alternatively, the contents of this file may be used under the terms of - either
the GNU General Public License Version 2 or later (the "GPL"), or - the GNU
Lesser General Public License Version 2.1 or later (the "LGPL"), - in which
case the provisions of the GPL or the LGPL are applicable instead - of those
above.

If you wish to allow use of your version of this file only - under the terms of
either the GPL or the LGPL, and not to allow others to - use your version of
this file under the terms of the MPL, indicate your - decision by deleting the
provisions above and replace them with the notice - and other provisions
required by the LGPL or the GPL. If you do not delete - the provisions above, a
recipient may use your version of this file under - the terms of any one of the
MPL, the GPL or the LGPL.

“‘dual” = confusing term that may be used for any of these situations, but
usually refers to business model of OSS license or commercial license choice
For more on dual-licensing as a business model: http://oss-
watch.ac.uk/resources/duallicence2

20

Check Your Understanding

What is a FOSS license?

What are typical obligations of a permissive FOSS license?

Name some permissive FOSS licenses.

What does license reciprocity mean?

Name some copyleft-style licenses.

What needs to be distributed for code used under a copyleft license?

Are Freeware and Shareware software considered FOSS?

What is a multi-license?

What information may you find in FOSS Notices, and how may the notices be used?

FOSS licenses are Freeand FOSS Software licenses generally make source code
available under terms that allow for modification and redistribution.

Typical obligations of a permissive FOSS license are that the copyright noticeand
warranty disclaimer areincluded with the software. Very often, the license would
expressly prohibits users from using the author's name without permission.

Examples of permissive FOSS licenses include MIT, BSD, and Apache.

License reciprocity means that the derivative work of the copyrighted work must be
made available under the same license. Other names being used include

"hereditary", "copyleft", "share-alike", and pejoratively"viral."

Examples of copyleft-stylelicenses include GPL and LGPL.

Copyleft-style licenses often have source availability obligations, which requireyou to
provide accompanying source code when you distribute a binary version of a program

or library. The source code should be of the same version and content that
corresponds to the binary version you distribute.

21

Freeware and Sharewareare not FOSS.Thereason is that even though freewareand
shareware are available without cost, they don'tallow the users to make
modifications to the software.In fact, many of the freeware and shareware contain
similar license restrictions common in proprietary software.

Multi-license refers to the practice where software is made available under multiple
licenses. For example, an open source software can be dual-licensed under MIT and
GPLv2.In that case, you arefree to choosethe license that suits your need.

FOSS Notices may include information about the identity of the copyright holders and
the license governing the software. FOSS Notices may provide notice about
modifications. Some licenses require that FOSS Notices be retained or reproduced for
attribution purposes.

21

CHAPTER 3

Introduction to FOSS Compliance

This chapter covers the big picture of FOSS compliance. It explains how compliance
works from first principles.

22

FOSS Compliance Goals oFencHAN

- Know your obligations (detect and track use of FOSS). You should have a process for
identifying, tracking and archiving a list of all FOSS components (and their respective
identified licenses) from which your software is comprised.

- Satisfy all the license obligations for the FOSS that is used. Your program should
identify and handle typical FOSS use cases that result from your organization’s
business practices.

This slide explains that FOSS complianceis really a two-part goal. The firstis to know
your obligations and have a process to supportthis knowledge. The second is to
satisfy the obligations.

23

A
OJ)

What Compliance Obligations Must Be Satisfied? ="

Depending on the license(s) involved, obligations could consist of:

- Attribution and Notices. Inclusion of copyright and license text in the source code
and/or product documentation or user interface, so that downstream users know the
origin of the software and their rights under the licenses

- Source code availability. Providing source code for original work, for combined work
or modifications, as well as build scripts (scripts that control the build process)

These obligations may trigger upon key events, such as:
- External distribution
+ Whether you have made modifications

This slide expands on what compliance obligations must be satisfied in typical FOSS
licenses.

24

FOSS Conditions & Restrictions

Depending on the FOSS license used, you may need to comply with one or
more of the following types of conditions and restrictions:

- Retain copyright (and other) notices

- Provide a copy of the license

- Provide notice of modifications

- Modified versions must have a different name to avoid confusion

- Provide access to source code (whether you modified it or not)

- Maintain modified versions (derivative works) under the same license
- Provide attribution

- Do not use the project or copyright holder name or trademark

- Do not restrict others of the rights granted under the original license

- Termination clauses (if you breach, you lose license)

This slide explains some of the conditions or restrictions commonly encountered
when using FOSS licenses. Remember, different licenses have different obligations.

25

AN

)

FOSS Compliance Triggers: Distribution

- Dissemination of material to an outside entity
- Applications downloaded to a user’'s machine or mobile device
- JavaScript, web client, or other code that is downloaded to the user's machine

- For some FOSS licenses, access via a computer network can be a “trigger
event.” The trigger is"users interacting with it remotely through a computer
network."

- Some licenses define the trigger event to include permitting access to software running
on a server (e.g., all versions of the Affero GPL if the software is modified)

This slide explains when FOSS obligations are “triggered.” FOSS licenses are copyright
licenses and the basic compliance trigger is when you distribute code to another legal
entity.

TN
UJ)

FOSS Compliance Triggers: Modification

- Changes to the existing program (e.g., additions, deletions of code in a file,
combining components together)

- Modifications may constitute a derivative work, and FOSS authors may limit or
place obligations on modifications

- Modifications may trigger FOSS obligations, such as:
- Notice of modification
- Providing accompanying source code

This slide explains that modifying code can impose obligations under FOSS licenses. It
explains a little bitabout derivative works.

27

TR
UV)

OPENCHAIN

FOSS Compliance Program

Organizations that have been successful at FOSS compliance have created their own
FOSS Compliance Programs (consisting of policies, processes, training and tools) to:

1. Facilitate effective usage of FOSS in commercial products
2. Respect FOSS developer rights and comply with license obligations
3. Contribute and participate in open communities

This slide explains how FOSS compliance programs work in “broad stokes” (a basic
overview).

28

TR
VN

Implementing Compliance Practices OPENCHAIN

Prepare business processes and sufficient staff to handle:

- ldentification of the origin and license of FOSS software

- Tracking FOSS software within the development process

- Performing FOSS review and identifying license obligations

- Fulfillment of license obligations when product ships

- Oversight for FOSS Compliance Program, creation of policy, and compliance decisions
« Training

This slide explains more about how FOSS compliance practices can workin an
organization.

29

N
OJ)

Compliance Benefits OPENCHAIN

Benefits of a robust FOSS Compliance program include:

- Increased understanding of the benefits of FOSS and how it impacts your organization
- Increased understanding of the costs and risks associated with using FOSS

- Better relations with the FOSS community and FOSS organizations

« Increased knowledge of available FOSS solutions

This slide describes some of the benefits that compliance brings to an organization
beyond the fact of fulfilling the legal obligations of the license.

30

Check Your Understanding

What does FOSS compliance mean?
What are two main goals of a FOSS Compliance Program?
List and describe important business practices of a FOSS Compliance Program.

What are some benefits of a FOSS Compliance Program?

FOSS compliance means following the licensing terms of FOSS licenses. It involves
understanding the licenses, having processes to supportthelicense terms, and having
processes to address any oversights or errors.

The two main goals of a FOSS compliance program are know your obligations and to
satisfy your obligations.

The important business practices of a FOSS compliance programinclude:

Identification of the origin and license of FOSS software

Tracking FOSS software within the development process

Performing FOSS review and identifying license obligations

Fulfillment of license obligations when product ships

Oversightfor FOSS Compliance Program, creation of policy,and compliance
decisions

Training

A FOSS compliance program provides various benefits such as an increased
understanding of how FOSS impacts your organization, an increased understanding of
the costs and risks associated with FOSS, better relations with the FOSS community

31

and increased knowledge of available FOSS solutions.

31

CHAPTER 4

Key Software Concepts for FOSS Review

This chapter describes some fundamental conceptsin understanding FOSS usage

32

How do you want to use to the component? =
Common scenarios include:

Incorporation

Linking

Modification

Translation

This slide is about how the use of FOSS components is a consideration for your
compliance. Different use cases will have differentlegal effects. The nextfew slides

explain these concepts in more detail.

D
OPENCHAIN

Incorporation

A developer may copy portions of a
FOSS component into your software -
product. \
Relevant terms include:
Integrating
Merging
Pasting
- Adapting
Inserting

This slides outlines what incorporation means when using FOSS.

34

N

Llnklng OPENCHAIN

A developer may link or join a FOSS
component with your software product.

Relevant terms include:
Static/Dynamic Linking
Pairing
Combining
Utilizing
Packaging
Creating interdependency

This slides outlines what linking means when using FOSS.

35

Modification o

Adeveloper may make ~ Adding
changes to a FOSS Injecting
component, including:

- Adding/injecting new
code into the FOSS
component

- Fixing, optimizing or

N\

making changes to the
FOSS component 4_/
- Deleting or removing -

code Deleting

D

OPENCHAIN

Fixing
Optimizing
Changing

This slides outlines what modification means when using FOSS.

36

. D
Translation

A developer may transform the code
from one state to another.

Examples include:

- Translating Chinese to English
Converting C++ to Java
Compiling VHDL in a mask or net list
Compiling into binary

This slides outlines what translation means when using FOSS.

37

AN
\ ‘\ ,.‘ \J/ /

OPENCHAIN

Development Tools

Inject material

Development tools may perform C
some of these operations
behind the scenes.

For example, a tool may inject
portions of its own code into
output of the tool.

Translate the material

Modify the material

This slides explains that developmenttools may do some of these actions “behind the
scene”,and thisis an area that companies should be aware of.

38

; —-‘/‘“,—_f—
UdJd o)

How is the FOSS component distributed?

- Who receives the software?
- Customer/Partner
- Community project

- What format for delivery?
- Source code delivery
- Binary delivery
- Pre-loaded onto hardware

This slide explains some of the concepts behind distribution. Because FOSS licenses
usually apply during distribution, this is akey point to considerin a compliance
program.

39

/]
Check Your Understanding

- What is incorporation?

- What is linking?

- What is modification?

- What is translation?

- What factors are important in assessing a distribution?

Incorporationis when you copy portions of a FOSS component into your software
product.

Linkingis when you link orjoina FOSS component with your software product.
Modification is when you make changes to a FOSS component.
Translation is when you transform the code from one state to another.

When thinking aboutdistribution of Open Source youshould consider two things:
Who receives the software?

 Customer/Partner
* Community project

Whatis the format for delivery?

* Source code delivery

40

Binary delivery
Pre-loaded onto hardware

40

CHAPTER 5

Running a FOSS Review

This chapter describes a “FOSS Review” process in which FOSS usageis analyzed and
the relevant obligations are determined

41

FOSS Review

- A key element to a FOSS Compliance Program is a FOSS Review process, through
which a company can analyze and determine its FOSS obligations
- The FOSS Review process includes the following steps:
- Gather relevant information
- Analyze and determine license obligations

- Provide guidance in light of company policy and business objectives

The FOSS Review is a basic building block of a FOSS Compliance Program.

A FOSS Review can bethe meeting pointfor engineering, business and legal teams,
and can require planning and organization to successfully conduct on alarge scale.

* Engineeringor developer teams may participate in gathering relevantinformation
* Legal teams analyze and determine license obligations and provide guidance

* Businessand engineering teams may receive and implement guidance

42

Initiating a FOSS Review OPENCHAIN

Initiate a FOSS
Review

Program Manager
Product Manager

Engineer [

The FOSS Review process should be accessible to Program/Product Managers, Engineers
and others who may be working with FOSS.

Note: This process may also start when receiving FOSS-based software from outside
vendors.

The firststep is to identify the proper parties to initiate a FOSS Review

Important questions to ask include:

* Who arethe decision makers about FOSS usage (managers, architects, individual
engineers, etc.)?

* How canthey raise questions about FOSS usage?

* Is there a regular pointin your development process where FOSS Reviews can
begin?

43

Package name

+ Version

+ Original download URL
License and License URL
Description
Description of modifications
List of dependencies
Intended use in your product

First product release that will include the package

What information do you need to gather?

When analyzing FOSS usage, collect information about the identity of the FOSS
component, its origin, and how the FOSS component will be used. This may include:

Availability of source code
Where the source code will be maintained

Whether the package had previously been approved
for use in another context

Inclusion of technology subject to export control

If from an external vendor:
* Development team's point of contact

* Copyright notices, attribution, source code for vendor
modifications if needed to satisfy license obligations

It should be noted that this list of information looks quite large. However, the amount
of information required depends on the size of your company and what you intend to
do with the FOSS code. Large entities tend to require more information than small

entities.

There area couple additional issues in the case of external vendors. First, you may
need to follow up with the vendor if FOSS issues arise in the future, and havinga
reliable point of contact isimportant. You may also need to meet FOSS license
obligations for FOSS delivered from the vendor. Ensure you have the notices and
source code as needed to meet these obligations.

44

FOSS Review Team OPENCHAIN

Initiate a FOSS
Review

Program Manager

Product Manager

Engineer [

Legal Scanning Specialists
A FOSS Review alerts and engages the various support groups that work together to support, guide,
coordinate and review the use of FOSS. This team may include:

- Legal team to identify and evaluate license obligations
- Scanning and tooling support team to help identify and track FOSS usage

- Specialists working with business interests, commercial licensing, export compliance, etc., who may be
impacted by FOSS usage

The FOSS Review team may consist of an interdisciplinary team

The legal team, which may includein-house or outside attorneys, reviews and
evaluates the FOSS usage for license obligations

The legal team may be supported by others, including:

* Scanningand tooling teams that identify and track FOSS usage. These teams may
provide supportusing code scanning or forensics tools to identify FOSS
componentsin a codebase. The teams may also organize and track information
gathered regarding FOSS usage to assist with later compliance processes.

* Other specialists or representatives that may be impacted by FOSS-related issues,
such as commercial licensing, compliance or business planning teams.

45

~

Analyzing Proposed FOSS Usage OPENCHAIN

g

Legal Scanning Specialists

The FOSS Review team should assess the information it has gathered before providing guidance, including
for issues such as:

- Completeness, consistency, accuracy (code scanning tools may be used to scan for undisclosed FOSS usage)
- Does the declared license match what is in the code files?

- Does the license truly permit the proposed use of the software?

The FOSS Review team should have the expertise to properly assess the FOSS

usage. This may require supportfrom engineering teams to educate legal and
business teams aboutthe proposed FOSS usage. For example, code scanning may be
used to locate undisclosed FOSS usage.

Once the proposed FOSS usage has been fully assessed, the legal team will then have
the necessary information on which to make its judgments.

46

AN

()
UV)

Working through the FOSS Review OFENCHAN

Initiate a FOSS
Review

Program Manager

Product Manager

Engineer I _

Guidance

Legal ScanningSpecialists

Working through the FOSS Review process is interactive. The work crosses disciplines, including engineering,
business and legal teams, and may require in follow-up discussion so that all parties understand the
underlying issues. Ultimately, the process should result in clear guidance on FOSS usage.

The FOSS Review process should be flexible enough to allow the interested parties to
collaborate. Sometimes a FOSS usage scenario may not be clear to the FOSS review
team. The engineering team will need the ability to provide further input. Likewise,

the engineering team may need assistance in implementing guidance fromthe FOSS
review team.

47

FOSS Review Oversight

Initiate a FOSS
Review

Program Manager ﬁ ﬁ

i

Product Manager wo rk
Engineer _
Legal Scanning Specialists
Guidance

Executive Review Committee
The FOSS Review process should have sufficient oversight in cases of disagreement between any of the
parties involved, or when a decision is particularly important.

The FOSS Review process should have oversight (for example, an Executive Review
Committee in this diagram). The oversight committee may make important policy
decisions or resolve disagreements between partiesin the review process.

48

Check Your Understanding OPENCHAN

What is the purpose of a FOSS Review?

What is the first action you should take if you want to use FOSS components?
What should you do if you have a question about using FOSS?

What kinds of information might you collect for a FOSS review?

What information helps identify who is licensing the software?

What additional information is important when reviewing a FOSS component from an
outside vendor?

What steps can be taken to assess the quality of information collected in a FOSS
Review?

To gather and analyze information regarding FOSS usage and to produce appropriate
guidance.

Initiate a FOSS review process. The method for initiating this process may vary by
company, but should be open to those who areinvolved in using FOSS in
development.

Initiate a FOSS review process or contact the FOSS review team. The process should
be flexible enough so that FOSS usersin your organization have access to guidance.

The package name, version, download URL, license, description and intended usein
your productis agood starting point. The precisely level of detail you will need

depends on your organization and intended use case.

The copyright notices, attribution and source code normally helps to identify who is
licensing the FOSS software.

Developmentteam's pointof contact in case you need to follow up with future FOSS
issues. You may also want to obtain copyrightand attribution notices, and source

49

code for vendor modifications if these are needed to satisfy license obligations for
FOSS licenses governing the third party software.

Check information for completeness, consistency and accuracy. This process may be

assisted by supportteams, including teams that run code scanning tools to scan for
undisclosed FOSS usage.

49

CHAPTERG6

End to End Compliance Management (Example Process)

This chapter contains an example of a detailed end to end compliance management
process.

50

Introduction

- Compliance management consists of a set of actions that controls the intake and
distribution of FOSS used in products (or "Supplied Software" in the OpenChain
specification)

- The result of compliance due diligence is an identification of all FOSS used in the
Supplied Software. It confirms that all FOSS license obligations have been or will be
met

- Small companies may just use a checklist while larger enterprises will have a detailed
process. This chapter provides an example of an enterprise process.

Compliance .
Process

This slide describes the definition of compliance management andits end goals.

Note that this section provides a detailed example of what may take placein alarge
enterprise. Smaller companies may wish to approach the process in a more
streamlined way.

51

Process OVEIVIEW copemes ‘v oo

FOSS software
components 1 l
N\
—t— —— —i—

Incoming Software
Proprietary Software

3" Party Software

"1 1 N i

Outgoing Software

Notices & Attributions
Written Offer

Resolve Issues
Reviews
Approvals
Registration
Verifications
Distribution
Verifications

c
2
=
®
1]
-
s
=
]
=

Idenufy FOSS Scan or audit source code Resolve any Record spproved Verify source code Publish source code,
components for —and - audit issucs in line with software/version packages for distribution notices and provide
review Confirm origin and company FOSS policies in inventory per —and - written offer
license of source product and per Verify appropriate

code release notices arc provided

Example of Compliance Management End-to-End Process

This slideis an overview of the steps that will be described in this chapter.

52

= OPENCHAIN
Identify and Track FOSS Usage
5 P | I - § §| &
— Bllg|sel B8 585035 o
ncoming: - 3 K s i & 5| = T| = utgoing:
§ S] 2z |2 3 |Z| 8 FOSS + Mods
Identify and begin tracking FOSS from all sources
Pre-requisites: * Steps: * Outcome:
The process may begin with one of these * Incoming requests are recorded + A compliance record is created (or
events: * Scans of entire platform may be updated) for the FOSS
The development team requests the performed + An audit is requested to scan or review
review of a FOSS component or an + Due diligence on any 3 party the source code
outgoing release p provided software
X X X * Recognize and review any FOSS
Discovery of FQS§ being used without components added to a repository
proper authorization without an incoming request
Discovery of FOSS being used as part of
third party software

The firststep in our example process is to identify FOSS usage.

This step may have been initiated by one of the events listed in “prerequisites.” For
example, a development team may haveinitiated a request (or initiated a FOSS
Review). The step may also begin if the review team discovers or is notified that FOSS
is being used in a softwarerelease or in third party software used by the company,
and that a proper review needs to take place.

In this example, the FOSS review team may identify FOSS usage through review
requests from engineers, from performing scans of internally-developed and third-
party software, or reviewing code checked into developmentbranches. The review
team will then create a record of the review, then move to the next step (“Audit”).

53

OPENCHAIN

Auditing Source Code

Incoming:
FOSS

Resolve
Issues
Reviews
Approvals

Registration
Notices
Verifications
Verifications

3

o
%
)
g2
&

8
]
£
§
=

Identify FOSS components and their origin and licenses

* Outcome:
An audit report identifying the origins
and licenses of the source code

+ Pre-requisites: * Steps:
+ Development team provides a * Source code for the audit is identified
compliance record with information * Source may be scanned by a software
about the FOSS usage tool
* Incases where no record is provided by ~ * “Hits” from the audit or scan are
the development team, a record can be reviewed and verified as to the proper
created when the FOSS component is origin of the code
discovered * Audits or scans are performed
iteratively based on the software
development and release lifecycles

The nextstep is auditing source code identified in the previous step.

In our example, the company may conduct research into the identified FOSS
component (e.g., review declared licenses, research origins of the FOSS component).
The company may also scan the source code to verify the origin and composition of
the code.

The review team may then produce an audit report with its conclusions regarding the
origin and licensing of the source code.

54

Resolving Issues orEncrAm

g i 2|5 g g

Incoming: g -‘6 § g 5 E Outgoing:
FOSS E H a B ‘§ 5 FOSS + Mods
= s <|| & 3 3
&
Resolve all issues identified in the audit
+ Pre-requisites: * Steps: : O”tcii\’m? Jution for each of the flagged
. i * Provide feedback to the appropriate resolution for each ot the €
A source code audit or scan has been pprop files in the report and a resolution for

completed engineers to resolve issues in the i i
- - - audit report that conflict with your any flagged license conflict

An audit report identifies the origins and FOSS policy

licenses of the source code and flags files

that need further investigation * Follow up with engineers to confirm

that the issues are resolved

Once an audit reportis produced that confirms the origin and licensing of source
code, the review team should flag and review any issues under the company FOSS
policy. For example, the earlier steps may haveidentified a FOSS component that
contains other FOSS code under an incompatible license. The review team should

provide appropriate feedback to the engineering team to resolve the issues.

55

OPENCHAIN

Performing Reviews

€ c
H 1P HENE
Incoming: 2 o £ 8 g 8 Outgoing:
SS 2 s é’ € Fl £ —*| FOSS +Mods
i 2 e IR

Review the audit report and confirm any discovered issues are resolved

Outcome:

Pre-requisites: Steps:
) + Include appropriate authority levels in * Ensure the software in the audit
Source code has been audited review staff report conforms with FOSS policies
Allidentified issues have been + Conduct FOSS Reviews on audited source ~ * Preserve audit report findings and
resolved code, review software architecture and mark resolved issues as ready for the

FOSS usage (see next slide for template) next step (i.e. Approval)

Identify obligations under FOSS licenses

In this step, the FOSS review team reviews the facts collected in the previous steps
and identifies the company’s obligations under the FOSS licenses.

This step may be closely linked with the previous step (Resolving AuditIssues). In the
previous step we removed FOSS usage that did not conform to company policy. In this
step, we evaluate and identify the license obligations for FOSS usage that is retained.

56

~
UdJd)

Architecture Review (Example Template) OPENCHAIN

Legend

- Proprietary

- 3 party Commercial

- GPL [Insert Components]
|:| User Space
LGPL

[Insert interaction method]
- FOSS Permissive

[Insert Components] Kernel Space

[Insert interaction method]

Function call

«Els socketinterface

System call [Insert Components) Hardware

«Lh-» Shared headers

This slide contains a template that may be used to illustrate FOSS usage and its
relationship with company software. For example, how are FOSS and company
components linked together? Templates such as these may be created by engineering
teams to help educate the FOSS review team about planned FOSS usage.

/
Approvals orENcrAn
Based on the results of the software audit and review in previous steps,
software may or may not be approved for use
+ The approval should specify versions of approved FOSS components, the
approved usage model for the component, and any other applicable
obligations under the FOSS license

+ Approvals should be made at appropriate authority levels

% gnsi§m §§
5| 2 | 8 %
" S|l B S| =2 2 "
I : € 22 e = B 2
e H R VT H
s & 8| =

In the approval step of our example process, the review team communicates whether
it approves of the FOSS usage in question, along with any associated conditions or
obligations. The approval should also include important details such as version
numbers of FOSS components and the approved usage scenario.

58

Registration / Approval Tracking

Once a FOSS component has been approved for usage in a product, it

should be added to the software inventory for that product

+ The approval and its conditions should be registered in a tracking system

+ The tracking system should make it clear that a new approval is needed for a

new version of a FOSS component or if a new usage model is proposed

5 2 (1§ E| 8
'ﬁ.‘gnsﬁ‘“s"
- S5 2¢ s| B S| R|2 i
EaaHHEHHH B HHE
L] <||l g S| @

OPENCHAIN

Approval informationfromthe previous step should be tracked or registered so that
anyonereleasing the software can understand and comply with the relevant license

obligations.

59

O A

OPENCHAIN

Notices

Verifications
Distribution
Verifications

Outgoing:
FOSS& Nﬁﬁls

Audit
Resolve
Issues
Reviews
Approvals
Registration

Incoming:
FOSS &

Prepare appropriate notices for any FOSS used in a product release:

- Acknowledge the use of FOSS by providing full copyright and attribution notices

- Inform the end user of their product on how to obtain a copy of the FOSS source
code (when applicable, for example in the case of GPLand LGPL)

- Reproduce the entire text of the license agreements for the FOSS code included in
the product as needed

If required by a FOSS license, appropriate notices should be prepared (often in a text
file that accompanies the release). Notices may include attribution notices,
modification notices, or offers for source code. For some licenses, you may also need

to includea full copy of the license text.

60

~

Pre-Distribution Verifications OPENCHAIN

- [3 I3
A HE R
— 5 § O -
HEHHEIHHIEE PSS
& S 2
Verify that distributed software has been reviewed and approved
i + Steps: * Outcome:
+ Pre-requisites: 21epS:) QDutcome:)
FOSS hasb dfor Verify FOSS packages destined for + The distribution package contains only
component has been approved for dlstrlbut(;on have been identified and software that has been reviewed and
usage approve a
. . . pproved
+ FOSS component has been registered in * Verify the reviewed source code matches Wriepes) I
the softw:re inventory for thegrelease the binary equivalents shipping in the Distributed Compliance Artifacts™ (as
. A riat ti hy b product defined in the OpenChain
ppropriate notices have been * Verify all appropriate notices have been specification), including appropriate
prepared included to inform end-users of their notice files are included in the
;'grs‘tsto request source code for identified distribution package or other delivery
* Verify compliance with otheridentified method
obligations

In this slide of our example process, the company verifies that it has met its FOSS
license obligations beforerelease. In cases where source code must be made
available, the company verifies that the source code matches the binary files being
distributed. The company also verifies that notices are properly produced and
included in distribution packages as needed.

61

O A

\

OPENCHAIN

Accompanying Source Code Distribution

Audit
Resolve
Issues
Reviews

Distribution
=

Registration
Notices
Verifications

Approvals

Incoming:
FO.")S"g E

Provide accompanying source code as required

* Outcome:
* Obligations to provide accompanying
source code are met

+ Pre-requisites: * Steps:)
All pre-distribution verification has been * Provide .accompanylrfg sourcg code
completed and no issue is discovered along with any a§soaated build tool_s

and documentation (e.g., by uploading
to a distribution website or including in
the distribution package)

Accompanying source code is

identified with labels as to which

product and version to which it
corresponds

In cases where source code must be made available, the company provides the
accompanying source code through the mechanisms permitted under the FOSS
license. This may mean providing the source code along with the software
distribution, making it available through a written offer, or posting a source code

archive on a website.

O
Final Verifications orEnerAm
5 w8 5 5| %
Bllg|2e| 2| s|l5| 823 2
- S| 8 sl E(S 2 i
Incoming: & 3|3 ; 5 - -1 S - 3 Outgoing:
FOSS 2l <| &8 R £ F0S5 s Mod
;E] & 3 -§ g ; + Is
Validate compliance with license obligations
Pre-requisites: * Steps: , _* Outcome: 4
. X . . « Verify accompanying source code (if + Verified Distributed Compliance
Accompanying source code s provided any) has been uploaded or distributed Artifacts are appropriately provided
as may be required correctly
* Appropriate notices have been * Verify uploaded or distributed source

code corresponds to the same version
that was approved

« Verify notices have been properly
published and made available

« Verify other identified obligations are
met

prepared

In this step, the company verifies that its distribution complies with its FOSS license
obligations. This step could be a function of an entity providing oversight for the
overall FOSS review process.

Check Your Understanding

- What is involved in compliance due diligence (for our example process, describe the
steps at a high level)?
- Identification
- Audit source code
- Resolving issues
+ Performing reviews
- Approvals
- Registration/approval tracking
+ Notices
- Pre-distribution verifications
- Accompanying source code distribution
- Verification

- What does an architecture review look for?

For ourexample process, the steps include:

* Identification - Identify and track FOSS usage. This may take place
through engineer requests, third party disclosures,orcode scanning.

* Auditingsource code - Review identified FOSS components forlicense and origin
information.

* Resolving issues - Remove FOSS usage that is incompatible with FOSS policies.

e Performing reviews - Assess and determine obligations for FOSS usage.

* Approvals-Communicate approval conditions and license obligations.

* Registration/approval tracking— Track approval conditions and license obligations
for later compliance steps.

* Notices - Prepare notices as required by FOSS licenses.

* Pre-distribution verifications — Review distributions for compliance before
release.

* Accompanying Source Code Distribution — Make sourcecode available as needed.

* Verification— Provide oversight for compliance process.

Architecture reviews examine therelationships between FOSS components and
company software. Forexample,how are FOSS and company components linked
together?

64

CHAPTER 7

Avoiding Compliance Pitfalls

This chapter describes some common pitfalls in FOSS compliance processes, and
discusses approaches to avoiding these pitfalls

65

e /‘“-\

WV N/

Compliance Pitfalls crenen
This chapter will describe some potential pitfalls to avoid in the compliance process:
1. Intellectual Property (IP) pitfalls

2. License Compliance pitfalls

3. Compliance Process pitfalls

In this chapter, we will describe some common pitfalls to avoid in the FOSS
compliance process.

Intellectual Property Pitfalls

OPENCHAIN

Type & Description

Discovery

Avoidance

Unplanned inclusion of copyleft
FOSS into proprietary or 3rd party
code:

This type of failure occurs during the
development process when engineers
add (or cut and paste) FOSS code into
source code that is proprietary (to you to
you or to a third party) in conflict with
your FOSS policies.

This type of failure can be

discovered by scanning or auditing the
source code for possible

matches with:

* FOSS source code

* Copyright notices

Automated source code
scanning tools may be used for
this purpose

This type of failure can be
avoided by:

Offering training to engineering staff
to bring awareness to compliance
issues and to the different types and
categories of FOSS licenses and the
implications of including FOSS
source code in proprietary source
code

Conducting regular source code
scans or audits for all the source
code in the build environment
(proprietary, 3" party and FOSS)

The first pitfall describedin this slide arises where copy left-style licensed FOSS is
inadvertently mixed with proprietary code.

This may be discovered through auditing source code forlicense notices or using code

scanningtools.

Preventative measures include training of engineering staff,and buildingregular
audits or scans into the developmentprocess.

67

Intellectual Property Pitfalls

Type & Description Discovery Avoidance
Unplanned linking of copyleft FOSS | This type of failure can be This type of failure can be
into proprietary source code in discovered using the avoided by
certain cases (or vice versa): dependency tracking tool 1. Offering training to engineering

that allows you to discover staff to avoid linking software
This type of failure occurs as linkages between components with licenses that
a result of linking software different software conflict with you FOSS policies
(FOSS, proprietary, 3 party) components. which will take a position on
with conflicting or incompatible licenses. these. legal risks .
2. Continuously running the

The legal effect of linking is subject to

debate in the FOSS community. dependency tracking tool over

your build environment

Inclusion of proprietary This type of failure can be This type of failures can be
code into copyleft FOSS through discovered using the audits or scans to | avoided by:
source code modifications identify and analyze the source code 1. Offering training to engineering
you introduced to the FOSS component. staff
2. Conducting regular code audits

The first pitfall in this slide arises where copyleft-style licensed FOSS is inad vertently
linked to proprietary code.

This type of failure may be detected usingdependency trackingtools orreviews of
architecture.

Preventative measures include training of engineering staff,and building architectural
reviews into the development process.

The second pitfall arises where proprietary code is included in copyleft-style licensed
FOSS. For example,an engineering team making modifications to a FOSS component
may include proprietary code in the modifications.

This type of failure may be discovered through auditing source code introduced into
the FOSS component.

Preventative measures include training of engineering staff and building regular audits
into the development process.

68

H H H OPENCHAIN
License Compliance Pitfalls
Type & Description Avoidance
Failure to Provide Accompanying This type of failure can be avoided by making source code capture and
Source Code publishing a checklist item in the product release cycle before the product

becomes available in the market place.

Providing the Incorrect Version of This type of failure can be avoided by adding a verification
Accompanying Source Code step into the compliance process to ensure that the accompanying source
code for the binary version is being published.

Failure to Provide Accompanying This type of failure can be avoided by adding a verification
Source Code for FOSS Component step into the compliance process to ensure that source code for
Modifications modifications are published, rather than only the original source code for the

FOSS component

The first pitfall in this slide arises where a company has an obligation to provide
accompanying source code,butfails to do so.

The second pitfall arises where a company provides accompanying source code,but
fails to provide the correct version that matches the distributed binary version.

The third pitfall arises where a company modifies a FOSS component, but fails to
publish the modified version of the source code. The company instead publishes the
source code for the original version of the FOSS component.

In each case, the failures may be prevented by properly applying steps in the
compliance process. Forexample,source code forreleased binaries should be
captured and stored along with the binary version. Verifications prior to release should
check to ensure the proper source code is provided withthe binary release.

OPENCHAIN

Failure to mark FOSS source
code that has been changed
as required by the FOSS license

License Compliance Pitfalls
Type & Description Avoidance
Failure to mark FOSS This type of failure can be avoided by:
Source Code 1. Adding source code modification marking as a verification step before
Modifications: releasing the source code

2. Offering training to engineering staff to ensure they update copyright

markings or license information of all FOSS or proprietary software that

is going to be released to the public

The pitfall in this slide arises where a company modifies a FOSS component, then
fails to mark its modifications whenrequired by the FOSS license. This pitfallmay be

prevented through implementing processes for marking code or within verification

steps.

70

09)
Compliance Process Failures o
Description Avoidance Prevention
Failure by developers to This type of failure can be This type of failure can be
seek approval avoided by offering training to prevented by:
to use FOSS Engineering staff on the 1. Conducting periodic full scan for the
company’s FOSS policies and software platform to detect any
processes. “undeclared” FOSS usage
2. Offering training to engineering staff
on the company's FOSS policies and
processes
3. Including compliance in the

employees performance review

Failure to take the This type of failure can be This type of failure can be

FOSS training avoided by ensuring that the prevented by mandating
completion of the FOSS training is engineering staff to take the
part of the employee’s FOSS training by a specific date

professional development plan
and it is monitored for completion
as part of the performance review

The pitfalls in this slide arise from a failure to integrate the FOSS compliance process
with the engineering team. In these cases, the engineering team does not raise FOSS
usage to the review process,ordoes notreceivethe training on how to handle FOSS
usage.

Preventative measures include monitoring of engineering training,and alsomaking
the compliance process easily accessibleto the engineering team.

Compliance Process Failures

OPENCHAIN

Description

Prevention

Failure to audit
the source code

Avoidance
This type of failure can be avoided by:
1. Conducting periodic source code scans/audits
2. Ensuring that auditing is a milestone in the

iterative development process

This type of failure can be

prevented by:

1. Providing proper staffing as to not
fall behind in schedule

2. Enforcing periodic audits

Failure to resolve

the audit findings
(analyzing the

"hits" reported

by a scan tool or audit)

This type of failure can be avoided by
not allowing a compliance ticket to be
resolved (i.e. closed) if the audit report
is not finalized.

This type of failure can be

prevented by implementing blocks in
approvals in the FOSS compliance
process

Failure to seek review of
FOSS in a timely manner

This type of failure can be avoided

by initiating FOSS Review requests early
even if engineering did not yet

decide on the adoption of the FOSS
source code

This type of failure can be
prevented through education

This slide describes potential consequences of compliance process failures. In the first
case,a code base may be used in development and releases without properreview.In
the second case,FOSS usage may be known, but license obligations are not reviewed
or determined. In the last case,the compliance process may face release deadline
pressures and have limited time to perform its tasks.

72

,;C.‘A_
U

Ensure Compliance Prior to Product Shipment orenciAn

- Companies must make compliance a priority before any product (in
whatever form) ships
* Prioritizing compliance promotes:
+ More effective use of FOSS within your organization
- Better relations with the FOSS community and FOSS organizations

While avoiding the pitfalls described in this chapter may take resources and effort,
prioritizing the FOSS compliance process is important. It can help you more
effectively use FOSS in yourdevelopment process,and also help maintain good
working relationships withinthe FOSS community.

)
09)

Establishing Community Relationships
As a company that uses FOSS in In addition, good relationships with
commercial product, it is best to FOSS organizations can be very helpful
create and maintain a good in advising on best way to be

relationship with the FOSS community, compliant and also help out if you
in particular, the specificcommunities experience a compliance issue.
related to the FOSS projects you use
and deploy in your commercial

product Good relationships with the software

communities may also be helpful for
two-way communication: upstreaming
improvements and getting support
from the software developers.

Your FOSS compliance process is a building block to establishing good working
relationships within the FOSS community.

7
Check Your Understanding oFENCHAN

- What types of pitfalls can occur in FOSS compliance?

- Give an example of an intellectual property failure.

- Give an example of a license compliance failure.

- Give an example of an compliance process failure.

- What are the benefits of prioritizing compliance?

- What are the benefits of maintaining a good community relationship?

Pitfalls can occurunder the following categories: IP failure,license compliance
failure,and compliance process failure.

An example of IP failure would be commingling of proprietary code and open source
code,which may result in making proprietary software available to general public
despite company's preference.

An example of license compliance failure would be a failure to mark an open source
software after modification or to properly listthe open source software components in
the software or to make the complete and corresponding source codeavailable.

An example of compliance process failure would be a failure in the process related to
audit,review,or approving the open source software. Auditors "waived" all the red-

flagged itemsin areport,orthat the review and approval process takes toolong.

The benefits of prioritizing compliance are that you become more efficient in youruse
of FOSS, and that you build a betterrelationship with the open source community.

The benefits of maintaining a good community relationship are that you can better

75

assess how you can comply with the FOSS license requirements,and you have a
better two-way communication with regard to contribution and use of the FOSS.

75

