
© 2017 VMware Inc. All rights reserved.

Future of Tracing
Wish List Edition

Steven Rostedt

21/10/2017

What ftrace currently does.

● Function tracing
● Function graph tracing
● Snapshots
● tracing events (sched_switch, timers, interrupts, block, etc)
● triggers

– stack trace

– trace off / (and on)

– snapshot

– histograms

● Latency tracing (interrupts, wakeup)
● Debugging

– trace_printk()

– ftrace_dump_on_oops

Function tracing

● Can filter on specific functions (set_ftrace_filter)
● Can remove function from being traced (set_ftrace_notrace)
● Can trace just a specific PID (set_ftrace_pid)
● Can trace children of those PIDS (options/function-fork)
● Can set triggers on a specific function

– stack trace

– snapshot

– trace off (and on)

– Enable/disable an event

● Can profile functions (see hit counts)
● Trace stack usage (biggest stack hog)

Function Graph Tracer

● Same filtering as function tracing
● Can “graph” a function (see only what a function calls)

– My disable tracing of interrupts (only care what the function calls)

● Can set a “max depth”
– Only trace the first instance (see where the kernel gets called)

● syscalls
● page faults

● Can see the time a function takes
– Singe functions

● Can profile on the times functions are executing

Snapshot

● Take a snapshot of the current live trace
● Can be done by user space (snapshot)
● Has instructions: cat snapshot

Snapshot commands:

echo 0 > snapshot : Clears and frees snapshot buffer

echo 1 > snapshot : Allocates snapshot buffer, if not already allocated.

Takes a snapshot of the main buffer.

echo 2 > snapshot : Clears snapshot buffer (but does not allocate or free)

(Doesn't have to be '2' works with any number that

is not a '0' or '1')

● Swaps the main buffer with the snapshot buffer

Trace Events

● Thousands of events exist today
– scheduling

– Interrupts

– Timers

– Hypervisors

– signals

– block

– paging

– context_tracking
● When tasks enter and exit userspace

● Trace just a PID (set_event_pid)
● Trace the children of those PIDs (options/event-fork)

Triggers

● Types
– snapshot

– tracing off (and on)

– stacktrace

– enable/disable events

– histograms

– enable/disable histograms

● Filtering
– <trigger> if <cond>

– condition on field, CPU, PID, comm etc

– if comm == “cyclictest”

Latency Tracing

● Interrupts and/or preemption off times
– Gives the max time irqs and/or preemption was disabled

● Wake up tracer
– Traces max time of wakeup to scheduling in

– wakeup - traces the latency of all tasks (trying to get the highest priority task)

– wakeup_rt - only traces RT tasks (trying to get the highest priority task)

– wakeup_dl - only traces DEADLINE tasks

● Both are static tracers
– not much room for customization

– hard to look at just a single process

Debugging

● trace_printk()
– Like printk() but has no limits for context (NMI, irq, scheduler, etc)

● (well, it can’t debug the tracing ring buffer)

– Optimized to be very fast

● ftrace_dump_on_oops
– dumps to the console on panic

– save the serial output

– make the buffers smaller, or you may be waiting for a long time

● kexec/kdump
– crash utility has a trace.so plugin to create a trace.dat file (for trace-cmd)

● reads ftrace ring buffers
● reads event format files

What’s coming

● More advanced histograms
– Full customization

● Pick specific fields to compare
● Trace only specific tasks
● Can do stack dumps
● Can display specific processes

– Synthetic events
● Can store custom fields based on other event historgrams
● Can also produce trace events and histograms

– Variables
● Store date by one event
● Read it from another event

What’s coming

● irq / preempt disable events
– Tracing when irqs and / or preemption is disabled

– Tracing when irqs and / or preemption is enabled

– Will allow for the histograms to work at the irq / preempt level

– Gives all the features of trace events to these locations

● Module Init tracing
– Enabling tracing of module events before a module is loaded

● Already there for module init functions (v4.14)

– Passing in trace events to enabled when the module is loaded

– Seeing what trace events exist in a module via modinfo

● Better interleaved tracing between hosts and guests

Wish list

● Zero overhead of irq / preempt enable/disable events
– Zero overhead when trancing is disabled (obviously not when it’s enabled)

– There’s got to be a way to do this

– Use of jump_label infrastructure

– Requires jump_label functionality in assembly

● Zero overhead for lock events
– Currently requires lockdep

– Perhaps can also use jump labels

– Would be able to create lock histograms (longest held, etc)

● Have more interaction with eBPF and ftrace

Wish list

● Add tracing of function parameters
– Use dwarf, or some other mechanism

● Function graph to report return code of functions
● Function graph rewrite (it needs some loving)
● Filtering of functions via sections, files, groups

– Use linker magic to add mappings between functions and with what they belong to
● Already exists for modules, but the interface can be better

– Needs to not bloat the kernel (make it a loadable module option, like config.gz)

Wish list

● Converting trace.dat (from trace-cmd) to CTF
– May have someone to work on that soon

● UUENCODED ftrace_dump_on_opps to make trace.dat file from
– when kexec/kdump doesn’t work

● Make perf ring buffer generic that ftrace tools can use it too
– ftrace ring buffer optimized for splice() not mmap

● trace-event and trace-cmd libraries

Wish list

● KernelShark
– There is now a full time developer on it

– Converting it to Qt (from GTK2)

– Plugins to customize views

– Other types of views
● flame graphs

– Finding a better visualization to show relations

– Reading histogram output

Wish list

● What else?
– Tell me

Thank You
Steven Rostedt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Thank You

