

ni.com

RT Troubles
Lessons Learned & Open Questions

Grațian Crișan

RT-Summit 2017

gratian.crisan@ni.com, gratian@gmail.com

Context
 National Instruments

 Makes hardware & software for test, measurement and control
 Real-Time OS group

 Using PREEMPT_RT for 6+ years
 ARM and Intel x86_64 architectures
 Embedded CPU + FPGA products
 OpenEmbedded / Yocto – based distribution

 Disclaimers
 Work by multiple people
 Intentionally picked problems with ugly hacks
 Some data might be stale by now

Agenda

 problem_space();

 do {

 rt_trouble_area();

 discussion();

 } while (topics && time);

Problem space[1]
controller

feedback

process
input output

loop frequency
(latency)[2]

10 kHz
(100 µS)

100 kHz
(10 µS)

RT troubles

 12-core x86_64

 2-core ARMv7

 PREEMPT_RT

[1] our current use cases
[2] in general wake-up latency accounts for majority of control loop latency

FPGAs

ni.com

RT Trouble #1

How bumping an Ethernet cable can ruin your day RT

and some TPM troubles

Symptoms
 CPU appears stalled in a MMIO read instruction for hundreds of µS

 Timer interrupts get delivered late even though the interrupts are enabled

 Initially discovered in e1000 / e1000e network drivers[1]

 by (accidentally) bumping into an Ethernet cable during a cyclictest run

 Recently found in TPM driver[2]

 by (intentionally) accessing the TPM chip while running cyclictest

[1] drivers/net/ethernet/intel/e1000e/*
[2] drivers/char/tpm/tpm_tis.c

late timer irq

Cyclictest histogram with TPM load

~400 µS added latency

Cyclictest histogram with TPM load

~400 µS added latency

hackbench
max ~56 µS

Why this happens
 CPU can write exponentially faster than the I/O device can sink

 Writes are buffered between the CPU and I/O

 Generally not an issue if the number of writes is small

 A MMIO read has to wait for every write to drain resulting in hundreds of µS

latency spikes

GPU
Memory

Controller
System Agent

I/O Fabric
512b @ 400MHz

I/O Fabric
128b @ 200MHz

A
udio

HD Audio

I2S

PCIe
IS

P MIPI-CSI

GPIO

U
S

B
 x

H
C

I

3.0

2.0

I/
O

 F
ab

ric
12

8b
 @

 1
33

M
H

z

SATA

I/
O

 F
ab

ric
64

b
@

 2
00

M
H

z
I/

O
 F

ab
ric

64
b

@
 1

00
M

H
z

ILB
APIC

8259

SMB

HPET

8254

RTC

GPIO IS
H I2C

GPIO

F
as

t
S

P
I TPM

Flash

LPC

P
M

C

PWM

I2C/SVID

THERMAL

S
C

S

SD Card

SDIO

eMMC

DMIC

LP
S

S

HSUART

SPI

I2C

Intel® TXE

D
isplay

DDI/eDP

MIPI-DSI

CPU Core CPU Core

L2 Cache

L1 L1 L1 L1

CPU Core CPU Core

L2 Cache

L1 L1 L1 L1

Dual

GPU
Memory

Controller
System Agent

I/O Fabric
512b @ 400MHz

I/O Fabric
128b @ 200MHz

A
udio

HD Audio

I2S

PCIe
IS

P MIPI-CSI

GPIO

U
S

B
 x

H
C

I

3.0

2.0

I/
O

 F
ab

ric
12

8b
 @

 1
33

M
H

z

SATA

I/
O

 F
ab

ric
64

b
@

 2
00

M
H

z
I/

O
 F

ab
ric

64
b

@
 1

00
M

H
z

ILB
APIC

8259

SMB

HPET

8254

RTC

GPIO IS
H I2C

GPIO

F
as

t
S

P
I TPM

Flash

LPC

P
M

C

PWM

I2C/SVID

THERMAL

S
C

S

SD Card

SDIO

eMMC

DMIC

LP
S

S

HSUART

SPI

I2C

Intel® TXE

D
isplay

DDI/eDP

MIPI-DSI

CPU Core CPU Core

L2 Cache

L1 L1 L1 L1

CPU Core CPU Core

L2 Cache

L1 L1 L1 L1

Dual

GPU
Memory

Controller
System Agent

I/O Fabric
512b @ 400MHz

I/O Fabric
128b @ 200MHz

A
udio

HD Audio

I2S

PCIe
IS

P MIPI-CSI

GPIO

U
S

B
 x

H
C

I

3.0

2.0

I/
O

 F
ab

ric
12

8b
 @

 1
33

M
H

z

SATA

I/
O

 F
ab

ric
64

b
 @

 2
00

M
H

z
I/

O
 F

ab
ric

64
b

 @
 1

00
M

H
z

ILB
APIC

8259

SMB

HPET

8254

RTC

GPIO IS
H I2C

GPIO

F
as

t
S

P
I TPM

Flash

LPC

P
M

C

PWM

I2C/SVID

THERMAL

S
C

S

SD Card

SDIO

eMMC

DMIC

LP
S

S

HSUART

SPI

I2C

Intel® TXE

D
isplay

DDI/eDP

MIPI-DSI

CPU Core CPU Core

L2 Cache

L1 L1 L1 L1

CPU Core CPU Core

L2 Cache

L1 L1 L1 L1

Dualbuffer

buffer

buffer

buffer

b
u

ff
e

r

e1000/e1000e hack[1]

[1] https://www.spinics.net/lists/linux-rt-users/msg14077.html

--- a/drivers/net/ethernet/intel/e1000e/mac.c
+++ b/drivers/net/ethernet/intel/e1000e/mac.c
@@ -353,6 +353,7 @@ void e1000e_update_mc_addr_list_generic(struct e1000_hw
 /* replace the entire MTA table */
 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)

E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i,
hw->mac.mta_shadow[i]);

+ E1000_WR_DELAY();
 e1e_flush();

+#ifdef CONFIG_E1000_DELAY
+#define E1000_WR_DELAY() usleep_range(50, 100)
+#else …

https://www.spinics.net/lists/linux-rt-users/msg14077.html

tpm_tis patch[1]

[1] https://lkml.org/lkml/2017/8/15/663

--- a/drivers/char/tpm/tpm_tis.c
+++ b/drivers/char/tpm/tpm_tis.c
@@ -103,7 +128,7 @@ static int tpm_tcg_write_bytes(struct tpm_tis_data
*data
 struct tpm_tis_tcg_phy *phy = to_tpm_tis_tcg_phy(data);
 while (len--)
- iowrite8(*value++, phy->iobase + addr);
+ tpm_tis_iowrite8(*value++, phy->iobase, addr);
 return 0;

+static inline void tpm_tis_iowrite8(u8 b, void __iomem *iobase,…)
+{
+ iowrite8(b, iobase + addr);
+ tpm_tis_flush(iobase);
+}

 #ifdef CONFIG_PREEMPT_RT_FULL
 ioread8(iobase + TPM_ACCESS(0));

https://lkml.org/lkml/2017/8/15/663

Discussion
 Preface: we know this is a hardware problem that might not have a good

software solution.

 Is it possible / likely on other archs?

 Other drivers you know of that have this problem?

Discussion
 Can we detect this access pattern (at runtime)?

 Any way to track I/O buffer states?

Discussion
 Other ways to throttle MMIO stores?

 Is there a more general solution possible?

 Adding a load (with exceptions) in iowriteN()/writeX() macros for PREEMPT_RT?[1]

[1] https://lkml.org/lkml/2017/8/7/550

https://lkml.org/lkml/2017/8/7/550

ni.com

RT Trouble #2

Concurrent hrtimer expirations from low priority threads

ni.com

RT Trouble #2 – Thank You!

Concurrent hrtimer expirations from low priority threads

Symptoms
 Multiple timed sleeps or timeouts coming from SCHED_OTHER threads can

stack up to large latencies for RT threads

 It is not just clock_nanosleep()

– lots of other things that use hrtimers e.g. futexes (with timeouts)

high priority thread wakeup

~15 µS

… more timer expirations

2-core ARMv7@667MHz with event tracing
149µS

another timer irq

sched tick ~40 µS

Pathological test

 Configurable number of SCHED_OTHER threads doing

while (!g_stop) {
t.tv_sec = 0;
interval = (rand() * 1000000LL) / RAND_MAX;
t.tv_nsec = interval;
clock_nanosleep(CLOCK_MONOTONIC, 0, &t, NULL);

}

cyclictest wakeup

~15 µS

~15 µS

…

190µS
2-core ARMv7@667MHz with event tracing

• Intel(R) Atom(TM) E3825 @ 1.33GHz dual

core

• kernel: 4.11.12-rt14

• cyclictest -m -S -p 98 -i 237 –H 200

• three day run

• two devices:

1. hackbench -g25 -l 1000000000

• running in process mode with 25

groups using 40 file descriptors each

(== 1000 tasks)

2. 1000 threads running timer stress

hackbench max 59 µS

hrtimer stress max 107 µS

• ARMv7 (v7l) @ 667MHz dual core

• kernel: 4.11.12-rt14

• cyclictest -m -S -p 98 -i 737 –H 500

• three day run

• two devices:

1. hackbench -l 1000000000 -f 25

• running in process mode with 10

groups using 50 file descriptors each

(== 500 tasks)

2. 500 threads running timer stress

hackbench max 103 µS

hrtimer stress max 261 µS

Hack[1] that (kind of) worked before v4.11.12-rt13

void hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
struct task_struct *task)

{
 sl->timer.function = hrtimer_wakeup;
- sl->timer.irqsafe = 1;
+ sl->timer.irqsafe = rt_task(task);
 sl->task = task;
}

[1] https://marc.info/?l=linux-rt-users&m=148354667204563&w=2

Much better patch[1]

time/hrtimer: Use softirq based wakeups for non-RT threads

Normal wake ups (like clock_nanosleep()) which are performed by
normal users can easily lead to 2ms latency spikes if (enough)
hrtimer wakeups are synchronized.
This patch moves all hrtimers wakeups to the softirq queue unless
the caller has a RT priority.

Reported-by: Gratian Crisan <gratian.crisan@ni.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>

[1] https://lkml.org/lkml/2017/10/4/560

• Intel(R) Atom(TM) E3825 @ 1.33GHz

• kernel: 4.11.12-rt14 + patch

• cyclictest -m -S -p 98 -i 237 –H 200

• 1000 threads, hrtimer stress load

with patch max 66 µS

hrtimer stress, w/o patch max 107 µS

https://marc.info/?l=linux-rt-users&m=148354667204563&w=2
https://marc.info/?l=linux-rt-users&m=148354667204563&w=2

• ARMv7 (v7l) @ 667MHz dual core

• kernel: 4.11.12-rt14 + patch

• cyclictest -m -S -p 98 -i 237 –H 200

• 500 threads, hrtimer stress load

with patch max 90 µS

hrtimer stress, w/o patch max 261 µS

https://lkml.org/lkml/2017/10/4/560

Lessons learned
 Report problems early

 Upgrade to the latest linux-rt-devel branch as soon as possible

 Don’t go on vacation before your RT-Summit presentation

ni.com

RT Trouble #3

Lack of priority inheritance support in the glibc pthread library

libpthread priority inheritance support
 With priority inheritance support:

 pthread_mutex_*

 Without priority inheritance support:
 pthread_rwlock_* internal lock
 sem_*
 pthread_spin_*
 pthread_cond_* internal lock

FUTEX_WAIT/WAKE

FUTEX_WAIT_BITSET/WAKE
user-space spinning

FUTEX_LOCK_PI/UNLOCK_PI

see next slide

pthread conditional variables

Current state glibc bug #11588

Austin Group defect #609

Discussion
 Do you know of work underway / progress since last year?

 Alternative libraries out there for RT friendly locking?

 Any RT friendly data structures library (e.g. circular buffers, FIFOs, etc.)

https://sourceware.org/bugzilla/show_bug.cgi?id=11588

ni.com

RT Trouble #4

Managing IRQ priorities and IRQ priority inversions

http://austingroupbugs.net/view.php?id=609

Big disclaimers
● We know the following patches are not appropriate for upstream

● The need for them arises from our inexperience at the time and a usability

problem with mapping an IRQ to its corresponding thread PID

● We are looking for best practice ideas

What is the best way to set IRQ priorities?

 Currently carrying[1]:

irq: Add priority support to /proc/irq/../

This patch allows configuring priority for different irq threads through
the /proc/irq/ system (much same as the existing mechanism to configure
the core affinity for irqs).
…

Signed-off-by: Sankara S Muthukrishnan <sankara.m@ni.com>
Signed-off-by: Julia Cartwright <julia.cartwright@ni.com>

[1] https://github.com/ni/linux/commit/5ff3a76173659863b6c5bda9ecf094d4621ccba7

What is the best way to set priorities on new IRQs?
 Currently carrying[1][2]:
[RFC][PATCH] fs/proc: add poll()ing support to /proc/interrupts

Implement polling on procfs' "interrupts" file which observes changes to
IRQ action handlers. The poll fires each time an action handler is
registered or unregistered.

This change enables daemons to watch for changes and apply certain system
policies relating to IRQ processing. For example, modify execution priority
of dedicated IRQ tasks after they're created.
…
Signed-off-by: Haris Okanovic <haris.okanovic@ni.com>
Signed-off-by: Ovidiu-Adrian Vancea <ovidiu.vancea@ni.com>
Signed-off-by: Brad Mouring <brad.mouring@ni.com>

[1] https://github.com/ni/linux/commit/8e2f148e2f4762cc2b6490ec01d5d31bc440bcf8
[2] http://www.spinics.net/lists/linux-rt-users/msg14076.html

IRQ priority inversions

Example

 Context
 Watchdog functionality implemented in a CPLD connected to a I2C bus
 It can be configured to fire an interrupt (as opposed to a straight reset)

 Behavior
 High priority watchdog interrupt fires
 To acknowledge the interrupt slow I2C transfers need to happen
 I2C interrupt thread has low priority
 Some unrelated mid-priority thread preempts the I2C interrupt

Discussion
 Ongoing work on avoiding IRQ priority inversions?

 Is there a more general solution to the priority inversion problem with

completion objects?

https://github.com/ni/linux/commit/5ff3a76173659863b6c5bda9ecf094d4621ccba7

ni.com

Extra stuff

https://github.com/ni/linux/commit/8e2f148e2f4762cc2b6490ec01d5d31bc440bcf8
http://www.spinics.net/lists/linux-rt-users/msg14076.html

ni.com

Tip #1

Check config options after a kernel upgrade

config CPU_SW_DOMAIN_PAN [1]

 bool "Enable use of CPU domains to implement privileged no-access"
 depends on MMU && !ARM_LPAE
 default y

 help
 Increase kernel security by ensuring that normal kernel accesses
 are unable to access userspace addresses. This can help prevent
 use-after-free bugs becoming an exploitable privilege escalation
 by ensuring that magic values (such as LIST_POISON) will always
 fault when dereferenced.

[1] Introduced in v4.3, commit a5e090acbf54 ("ARM: software-based priviledged-no-access support").
 Adds code in uaccess_*, save_regs, load_regs macros.

Perf Diff

ni.com

Tip #2

Check your clock sources

Check your clock sources
 Issues encountered

 TSC clock source gets disabled by the clock source watchdog due to acpi_pm rollover
 Boot hang caused by left over test code in BIOS that sets the TSC_ADJUST register

on core 0

 On upgrades and new hardware it helps to:
 Check current clock source

/sys/devices/system/clocksource/clocksource0/current_clocksource

 Compare timer expirations against external reference
 Drive trace off external clock source (e.g. FPGA)

ni.com

Tip #3

Run reboot tests

Run reboot tests
 Multiple issues discovered by running a simple reboot test

 Hangs on boot
 Ext4 data corruptions
 NAND read disturbs
 Ethernet link detection issues
 futex race on exit
 i915 crash on module load

 Suggestions
 Simple test - calls reboot once the software stack is up
 Hard reboots - data loss is OK, data corruption is not
 (optional) Temperature controlled chamber

