
Unikernelized Preempt-RT Linux & IoT
-- UniLinux for IoT

Tiejun Chen <tiejunc@vmware.com>
VMware China R&D Advanced Technology Center

This is our own exploration of unikernels.

This is not a roadmap or commitment from VMware.

Warning

Unikernels Background

 IoT Background

Unikernel exploration -- UniLinux

 Summary

Agenda

• VM with traditional OS

• Linux container technologies like Docker

• Container as a VM

• But now unikernels is really beginning to attract our attention !

Architectural Evolution Background

1

• Definition

– Unikernels are specialised, single address space machine images constructed by
using library operating systems. --Wiki

• Types

– General purpose unikernels

– Language specific unikernels

• Unikernels approaches

– OSv, IncludeOS, MirageOS, ClickOS, Clive, HaLVM, LING, Rump Kernels, Solo5
Unikernel and Drawbridge

– Unik

• Unikernels solutions
– Docker/Mikelangelo/NFV

2

Unikernels

• The biggest characteristics

– Single address space: Zero-copy and huge page

– Single running mode: Perform the efficient function call

– One process with multiple threads: No heavy context switch and TLB flush

• Unikernels still provide many comparable benefits

– Improved security

– Small footprints

– Fast Boot

– Highly optimized

3

Unikernel Essentials

• Status
– Unikernels really yield comparable performance.

– Why existing unikernels have yet to gain large popularity?
• Lack of compelling use cases
• Compatibility with existing applications
• Lack of production support (e.g. monitoring, debugging, logging)
• Lack of industry standard to Unikernels

• Conclusion
– Linux could be a good candidate of unikernels

• Linux itself could help eliminate those challenges
– Use cases & scenarios
– Libraries
– Tools and utilities
– All optimizations and acceleration aimed to Linux can benefit unikernels
– Fervent Linux community

• UniLinux – Unikernelize Linux

Research Conclusions

7

• IO intensive applications

• Serverless

• Blockchain

• Machine Learning

• IoT

Some Use Cases for UniLinux

8

IoT Layout Architecture

8

IoT Devices

IoT Devices

IoT Devices

IoT CloudNB- IoT Base station

IoT Devices LoRa Gateway

IoT Edge Gateway

IoT Devices IoT Embedded PC

IoT Devices IoT Micro datacenter

NB-IoT

LoRa

Things Edge/Fog

• IoT
– IoT Cloud

• Microservice
– Unikernels vs Container

• Serverless
– Data driven model & Container

– IoT Edge/Fog
• Pros

– Unikernels have improved security
• VM | smaller attack surface | short-lived lifecycle

– Unikernels are fast small and quick boot
• IoT devices/edge gateway/embedded PC

• Cons
– Unikernels mostly need virtualization technology
– Unikernels don’t act specifically to those typical IoT characters

• Power save, CPU Arches, Real-time requirement, etc.

Embrace the IoT through unikernels 1/2

10

• Conclusion
– Unikernels can play for IoT

• Virtualization will thrive at the edge/fog
– Security issue
– Multiple tenancy
– Fragmentation
– Enhanced Edge or Fog computing

• IoT devices or platforms == Embedded systems
– Linux already and always plays a very import role

• Unikernelized Linux can run on bare metal instance easily

– It’s worth exploring unikernelized Linux in the case of IoT

Embrace the IoT through unikernels 2/2

10

Our target is to explore what is the best platform for running unikernels case

We will achieve this by

• Research existing unikernels
– Integrate and support those major existing unikernels well

– Integrate virtIO model into ESXi as an example

• Build new unikernel
– Convert Linux kernel: UniLinux

• Explore optimizations
– Provide monitoring, logging and remote debugging

– Supporting a short lived unikernels instance
– Resources are consumed by live unikernels

12

What Could We Do?

• Convert Linux to unikernels
– The fundamental philosophy of Linux

• Multiple processes
• Two modes

– Tightly coupled components
– How to further improve performance

• Reduce time of creating VM
– Snapshot

– VMware Instant Clone

• A good paravirtualized API for common unikernels
– Some existing pv ops

• New scheduler

• Manage the lifecycle and identities of the provisioned unikernels

13

What Are The Key Challenges?

• Support major existing unikernels
– Integrate virtIO framework into ESXi

– Port PV drivers into them

• Define a standard API which can paravirtualize unikernels
– Based on common hypercall

– Configure/control guest OS

– Setup Inter-VM Communication
– Allocate/destroy memory directly

• Add a new scheduler
– Address short lived unikernels VM

– Schedule a group of unikernels instances

How Could We Possibly Achieve This? Hypervisor basics

14

• Convert Linux
– Single Supervisor mode

• Force setting Ring 0
– __USER32_CS | __USER_DS | __USER_CS
– [GDT_ENTRY_DEFAULT_USER{32}_{CS:DS}]

• Using Interrupt Stack Table (IST)
– set_intr_gate_ist(X86_TRAP_PF, &page_fault, PF_STACK)
– Interrupt and exception

• Rephrase VDSO
– Redirect as function call

• Manage Stack
– Switch stack manually

– Single address space
• Single process with multiples threads

– No fork()

How Could We Possibly Achieve This? Linux basics 1/6

15

• Convert Linux
– Optimization

• Smaller size and footprint
– Kconfig
– Only keep necessary function call (system call)

• Zero-copy
– access_ok
– {get,put}_user
– copy_{from,to}_user
– clear_user/strnlen_user/strncpy_from_user

• Scheduler
– scheduling classes & policies

• fair vs rt vs deadline

• Lightweight TCP/IP Stack
– LWIP
– Fastsocket
– Seastar
– …

How Could We Possibly Achieve This? Linux basics 2/6

16

• A variety of Unikernelized Linux Profiles
– Unikernelized Stand Linux

– Unikernelized Secure Linux
• SELinux
• Grsecurity Linux

– Unikernelized Preempt-RT Linux
• Preempt-RT Linux
• Potential use cases

– airbag or break control in cars
– flight systems in airplanes

• Two scenarios
– Bare metal environment
– Virtualization environment

How Could We Possibly Achieve This? Linux basics 3/6

17

• Virtualization Architecture
– Native vs Full vs Para virtualization

– Hardware assited virtualization

How Could We Possibly Achieve This? Linux basics 4/6

17

Hardware
Hypervisor | VMM

Unmodified Guest OS

Hardware
OS

Unmodified Guest OS

Application

Hardware
Hypervisor | VMM

Modified Guest OSModified Guest OS

Application Application Application Application

Native Full virtualization Para virtualization

• Real Time (HW) virtualization Architecture
– There are two levels of the hierarchical scheduling structure.

• OS + Hypervisor

How Could We Possibly Achieve This? Linux basics 5/6

17

RT Task 1 RT Task 2 RT Task N

vCPU 1 vCPU 2 vCPU M

SCHED_DEADLINESCHED_DEADLINE

pCPU 1 pCPU 2 pCPU L

SchedulerScheduler
Hypervisor

Preempt-RT Linux

• Unikernelized Preempt-RT Linux & Virtualization
– Challenges of how to still guarantee such a correct timing behavior

• Two levels scheduling structure
• Hypervisors have no knowledge of tasks within VM
• Memory management
• The lock-holder preemption problem

– What could we do?
• A real-time VM with Unikernelized Preempt-RT Linux is limited to one RT task

– One process with multiple threads with SCHED_DEADLINE

• vCPU = pCPU
– Para-virtualization with hypercall

• vCPU cannot be preempted out

• Page allocation
– Para-virtualization with hypercall

• Reserve physical memory pool

• Direct interrupt

How Could We Possibly Achieve This? Linux basics 6/6

17

• Support existing applications
– Different code circumstances

• Source code
– New standard library like glibc
– Function Call

• Binary
– –shared –pic

• LD_PRELOAD | ld.so.preload
– Others

– Multiple processes
• One fork = one UniLinux instance

– IPC = Inter-VM Communication

• PCID – Process-context identifiers
– Limited bits
– Linux’s own debug/monitor/log tools and utilities

• uClinux
– Multitasking without an MMU

18

How Could We Possibly Achieve This? Compatibility

• Debug unikernels
– Log info

• virtual serial port
• Dynamic buffer memory allocation

– Linux’s own utilizes
• ssh/gdb/ftrace/perf/kprobe/kdump/…
• PCID & the balloon driver

• Monitor unikernels
– A mini-httpd as a stub connecting those Linux utilities

• Inspired by OSv

• Log unikernels
– rsyslog

– vRealize Log Insight

19

How Could We Possibly Achieve This?
Debugging, monitoring and logging

• Offer faster boot
– Explore ESXi to further reduce the time of creating VM

– Skip BIOS with a small integrated bootloader
– Replace ACPI with DTB

– Adopt 1:1 Bus/device initialization
• No any redundant bus scanning and device probing

• Utilize hardware virtualization
– VT-X Instructions

• VMFUNC
– Pre-construct EPT table to get a faster and secure way to communicate between unikernels

– VT-X Features
• VPID (Virtual processor ID)

– The tagged TLB to reduce cost of performance

• Preempt Timer
– A feature which count down in unikernels without too much external timer injected by hypervisor

How Could We Possibly Achieve This? Enhancements

20

• Construct an efficient toolchain
– Build and deploy Unilinux like Docker

– Customized components management
• Configuration
• Basic Kernel image
• User App
• Dependencies

• Support orchestration
– Unik

• Integrate Source Code Analyzer tool
– This can help us enhance security from code level

21

How Could We Possibly Achieve This? Others

• Unikernels Manager

• App Image and App Registry

22

How Could We Possibly Achieve This? Management

Unikernels
Client

Unikernels
Client

Unikernels
Manager

UApp

UApp

UApp

UApp
Images

UApp
Registry

Pull Image
REST API

UApp = Unikernels App

VDFS

App

Block Storage

ESXi

Hypervisor +
Unikernel VMs

Unikernel
VM

How Could We Possibly Achieve This? VDFS

• VDFS is a hyper-converged distributed
file system with modern features

• Key features:
– POSIX compliant

– Support advanced features:
• Distributed and scale-out
• Zero config (no network to manage)

– Multi-backend

• VDFS is an ideal platform for unikernels
– Zero config

– Shared file system cache
– No need to manage disk images for

unikernels

Library OS

23

• Unikernels Overview

• Those existing unikernels have yet to gain very large popularity. UniLinux
probably can boost unikernels.

• Preempt-RT UniLinux is very well suited for IoT.
– IoT Cloud

– IoT Edge + IoT Fog

Summary

24

• http://unikernel.org/projects/

• https://wiki.xen.org/images/3/34/XenProject_Unikernel_Whitepaper_2015_
FINAL.pdf

• https://www.linux.com/news/7-unikernel-projects-take-docker-2015

• https://www.usenix.org/node/184012

• https://www.deepdyve.com/lp/institute-of-electrical-and-electronics-
engineers/includeos-a-minimal-resource-efficient-unikernel-for-cloud-
services-J43NrzQ7fn

• https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-
martins.pdf

References

Thank You!

tiejunc@vmware.com

